The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Pterine     2-amino-1H-pteridin-4-one

Synonyms: Pterin, Pteridoxamine, SureCN64320, SureCN64321, zlchem 1229, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Pterin


Psychiatry related information on Pterin


High impact information on Pterin

  • They absorb light and transmit the electromagnetic signal to the molecular clock using a pterin and flavin adenine dinucleotide (FAD) as chromophore/cofactors, and are evolutionarily conserved and structurally related to the DNA repair enzyme photolyase [7].
  • Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center [8].
  • Pterin binding refolds the central interface region, recruits new structural elements, creates a 30 angstrom deep active-center channel, and causes a 35 degrees helical tilt to expose a heme edge and the adjacent residue tryptophan-366 for likely reductase domain interactions and caveolin inhibition [9].
  • In ischemic ileal segments pretreated with purified pterin aldehyde, vascular permeability increased to only 0.15 +/- 0.02 [1].
  • Letter: Pterin administration as a therapy for P.K.U. due to dihydropteridine-reductase deficiency [10]?

Chemical compound and disease context of Pterin


Biological context of Pterin


Anatomical context of Pterin

  • The molybdenum cofactor biosynthetic protein Cnx1 complements molybdate-repairable mutants, transfers molybdenum to the metal binding pterin, and is associated with the cytoskeleton [21].
  • The absence of hyperphenylalaninemia and the presence of normal urinary pterin metabolites and of normal SR-like activity in red blood cells may be explained by alternative pathways for the final two-step reaction of BH(4) biosynthesis in peripheral and neuronal tissues [22].
  • In this article, we report two patients with progressive psychomotor retardation, dystonia, severe dopamine and serotonin deficiencies (low levels of 5-hydroxyindoleacetic and homovanillic acids), and abnormal pterin pattern (high levels of biopterin and dihydrobiopterin) in cerebrospinal fluid [22].
  • Hybridoma cell lines isolated from the immunized mice secreted monoclonal antibodies reacting specifically with the pterin molecule and monoclonal antibodies which were found to bind phenylalanine hydroxylase [23].
  • We have recently shown that interferon-gamma is capable of activating the key enzyme of pterin biosynthesis in macrophages [24].

Associations of Pterin with other chemical compounds


Gene context of Pterin

  • Collectively, these findings suggest (i) that, unlike the antifolate principle, the 4-amino substituent is not essential for developing pterin-based NOS inhibitors and (ii), provide a steric and electrostatic basis for their rational design [29].
  • Characterization of a novel pterin intermediate formed in the catalytic cycle of tyrosine hydroxylase [30].
  • The bound conformers of the substrate and the pterin were then docked into the modeled three-dimensional structure of TPH [31].
  • The substitution of ornithine apparently does not perturb the pterin specificity of FPGS [32].
  • Kinetic analysis of TH activity versus low concentrations of the pterin co-factor (0.05-0.4 mM) indicated that the stimulations elicited by CRF, SVG and UT were associated with an increase in the Vmax of the enzyme form with high affinity for the co-factor [33].

Analytical, diagnostic and therapeutic context of Pterin

  • Equilibrium titration of HPPK into HMDP and AMPCPP showed an enhancement of fluorescence from the pterin ring of the substrate, and a dissociation constant of 36 nm was deduced for HMDP binding to the HPPK.AMPCPP binary complex [34].
  • In this work we studied the spectroscopic and electrochemical properties of 4-HBCR by EPR and Mössbauer spectroscopy and identified the pterin cofactor as molybdopterin mononucleotide [35].
  • HPLC product analysis showed that 7,8-BH(2) and pterin are the stable products generated from the reaction [36].
  • Reference values of all enzyme activities and pterin production were measured in fibroblasts and also in amniocytes for prenatal diagnosis [37].
  • Possible catalytic roles for these histidines in the hydroxylation mechanism of pterin-dependent monooxygenases are discussed along with potential future applications of the combination of ESEEM with site-directed mutagenesis [38].


  1. Xanthine oxidase inhibitors attenuate ischemia-induced vascular permeability changes in the cat intestine. Granger, D.N., McCord, J.M., Parks, D.A., Hollwarth, M.E. Gastroenterology (1986) [Pubmed]
  2. Tetrahydrobiopterin inhibits monomerization and is consumed during catalysis in neuronal NO synthase. Reif, A., Fröhlich, L.G., Kotsonis, P., Frey, A., Bömmel, H.M., Wink, D.A., Pfleiderer, W., Schmidt, H.H. J. Biol. Chem. (1999) [Pubmed]
  3. Crystal structure of Mycobacterium tuberculosis 7,8-dihydropteroate synthase in complex with pterin monophosphate: new insight into the enzymatic mechanism and sulfa-drug action. Baca, A.M., Sirawaraporn, R., Turley, S., Sirawaraporn, W., Hol, W.G. J. Mol. Biol. (2000) [Pubmed]
  4. Mechanistic studies on phenylalanine hydroxylase from Chromobacterium violaceum. Evidence for the formation of an enzyme-oxygen complex. Pember, S.O., Johnson, K.A., Villafranca, J.J., Benkovic, S.J. Biochemistry (1989) [Pubmed]
  5. Stability of the heme environment of the nitric oxide synthase from Staphylococcus aureus in the absence of pterin cofactor. Chartier, F.J., Couture, M. Biophys. J. (2004) [Pubmed]
  6. Abnormalities in urinary pterin levels in Rett syndrome. Messahel, S., Pheasant, A.E., Pall, H., Kerr, A.M. Eur. J. Paediatr. Neurol. (2000) [Pubmed]
  7. Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception. Sancar, A. Annu. Rev. Biochem. (2000) [Pubmed]
  8. Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Raman, C.S., Li, H., Martásek, P., Král, V., Masters, B.S., Poulos, T.L. Cell (1998) [Pubmed]
  9. Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Crane, B.R., Arvai, A.S., Ghosh, D.K., Wu, C., Getzoff, E.D., Stuehr, D.J., Tainer, J.A. Science (1998) [Pubmed]
  10. Letter: Pterin administration as a therapy for P.K.U. due to dihydropteridine-reductase deficiency? Kaufman, S. Lancet (1975) [Pubmed]
  11. In vitro synthesis of molybdopterin from precursor Z using purified converting factor. Role of protein-bound sulfur in formation of the dithiolene. Pitterle, D.M., Johnson, J.L., Rajagopalan, K.V. J. Biol. Chem. (1993) [Pubmed]
  12. Reconstitution of Escherichia coli DNA photolyase with various folate derivatives. Wang, B., Jorns, M.S. Biochemistry (1989) [Pubmed]
  13. Resonance Raman spectroscopic characterization of the molybdopterin active site of DMSO reductase. Kilpatrick, L., Rajagopalan, K.V., Hilton, J., Bastian, N.R., Stiefel, E.I., Pilato, R.S., Spiro, T.G. Biochemistry (1995) [Pubmed]
  14. Bacterial cyanide oxygenase is a suite of enzymes catalyzing the scavenging and adventitious utilization of cyanide as a nitrogenous growth substrate. Fernandez, R.F., Kunz, D.A. J. Bacteriol. (2005) [Pubmed]
  15. Role of the second coordination sphere residue tyrosine 179 in substrate affinity and catalytic activity of phenylalanine hydroxylase. Zoidakis, J., Sam, M., Volner, A., Han, A., Vu, K., Abu-Omar, M.M. J. Biol. Inorg. Chem. (2004) [Pubmed]
  16. Structural basis of autoregulation of phenylalanine hydroxylase. Kobe, B., Jennings, I.G., House, C.M., Michell, B.J., Goodwill, K.E., Santarsiero, B.D., Stevens, R.C., Cotton, R.G., Kemp, B.E. Nat. Struct. Biol. (1999) [Pubmed]
  17. Phenylketonuric Tetrahymena: phenylalanine hydroxylase mutants and other tyrosine auxotrophs. Sanford, Y.M., Orias, E. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  18. Pteridine reductase mechanism correlates pterin metabolism with drug resistance in trypanosomatid parasites. Gourley, D.G., Schüttelkopf, A.W., Leonard, G.A., Luba, J., Hardy, L.W., Beverley, S.M., Hunter, W.N. Nat. Struct. Biol. (2001) [Pubmed]
  19. Participation of pterins in the control of lymphocyte stimulation and lymphoblast proliferation. Ziegler, I., Hamm, U., Berndt, J. Cancer Res. (1983) [Pubmed]
  20. Tyrosine hydroxylase. Activation by protein phosphorylation and end product inhibition. Ames, M.M., Lerner, P., Lovenberg, W. J. Biol. Chem. (1978) [Pubmed]
  21. The molybdenum cofactor biosynthetic protein Cnx1 complements molybdate-repairable mutants, transfers molybdenum to the metal binding pterin, and is associated with the cytoskeleton. Schwarz, G., Schulze, J., Bittner, F., Eilers, T., Kuper, J., Bollmann, G., Nerlich, A., Brinkmann, H., Mendel, R.R. Plant Cell (2000) [Pubmed]
  22. Mutations in the sepiapterin reductase gene cause a novel tetrahydrobiopterin-dependent monoamine-neurotransmitter deficiency without hyperphenylalaninemia. Bonafé, L., Thöny, B., Penzien, J.M., Czarnecki, B., Blau, N. Am. J. Hum. Genet. (2001) [Pubmed]
  23. Structural similarities among enzyme pterin binding sites as demonstrated by a monoclonal anti-idiotypic antibody. Jennings, I., Cotton, R. J. Biol. Chem. (1990) [Pubmed]
  24. Relationship of interferon-gamma and neopterin levels during stimulation with alloantigens in vivo and in vitro. Woloszczuk, W., Troppmair, J., Leiter, E., Flener, R., Schwarz, M., Kovarik, J., Pohanka, E., Margreiter, R., Huber, C. Transplantation (1986) [Pubmed]
  25. Monomeric inducible nitric oxide synthase localizes to peroxisomes in hepatocytes. Loughran, P.A., Stolz, D.B., Vodovotz, Y., Watkins, S.C., Simmons, R.L., Billiar, T.R. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  26. Tetrahydrobiopterin, the cofactor for aromatic amino acid hydroxylases, is synthesized by and regulates proliferation of erythroid cells. Tanaka, K., Kaufman, S., Milstien, S. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  27. Grafting fibroblasts genetically modified to produce L-dopa in a rat model of Parkinson disease. Wolff, J.A., Fisher, L.J., Xu, L., Jinnah, H.A., Langlais, P.J., Iuvone, P.M., O'Malley, K.L., Rosenberg, M.B., Shimohama, S., Friedmann, T. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  28. Structure and expression of human dihydropteridine reductase. Lockyer, J., Cook, R.G., Milstien, S., Kaufman, S., Woo, S.L., Ledley, F.D. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  29. Structural basis for pterin antagonism in nitric-oxide synthase. Development of novel 4-oxo-pteridine antagonists of (6R)-5,6,7,8-tetrahydrobiopterin. Kotsonis, P., Fröhlich, L.G., Raman, C.S., Li, H., Berg, M., Gerwig, R., Groehn, V., Kang, Y., Al-Masoudi, N., Taghavi-Moghadam, S., Mohr, D., Münch, U., Schnabel, J., Martásek, P., Masters, B.S., Strobel, H., Poulos, T., Matter, H., Pfleiderer, W., Schmidt, H.H. J. Biol. Chem. (2001) [Pubmed]
  30. Characterization of a novel pterin intermediate formed in the catalytic cycle of tyrosine hydroxylase. Almås, B., Haavik, J., Flatmark, T. Biochem. J. (1996) [Pubmed]
  31. Conformation of the substrate and pterin cofactor bound to human tryptophan hydroxylase. Important role of Phe313 in substrate specificity. McKinney, J., Teigen, K., Frøystein, N.A., Salaün, C., Knappskog, P.M., Haavik, J., Martínez, A. Biochemistry (2001) [Pubmed]
  32. Structural specificity of inhibition of human folylpolyglutamate synthetase by ornithine-containing folate analogs. McGuire, J.J., Bolanowska, W.E., Piper, J.R. Biochem. Pharmacol. (1988) [Pubmed]
  33. CRF-like effects of sauvagine and urotensin I on synaptosomal tyrosine hydroxylase activity of mouse striatum. Onali, P., Olianas, M.C. Brain Res. (1990) [Pubmed]
  34. Equilibrium and kinetic studies of substrate binding to 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase from Escherichia coli. Bermingham, A., Bottomley, J.R., Primrose, W.U., Derrick, J.P. J. Biol. Chem. (2000) [Pubmed]
  35. Redox centers of 4-hydroxybenzoyl-CoA reductase, a member of the xanthine oxidase family of molybdenum-containing enzymes. Boll, M., Fuchs, G., Meier, C., Trautwein, A., El Kasmi, A., Ragsdale, S.W., Buchanan, G., Lowe, D.J. J. Biol. Chem. (2001) [Pubmed]
  36. Reaction of tetrahydrobiopterin with superoxide: EPR-kinetic analysis and characterization of the pteridine radical. Vásquez-Vivar, J., Whitsett, J., Martásek, P., Hogg, N., Kalyanaraman, B. Free Radic. Biol. Med. (2001) [Pubmed]
  37. Diagnosis of dopa-responsive dystonia and other tetrahydrobiopterin disorders by the study of biopterin metabolism in fibroblasts. Bonafé, L., Thöny, B., Leimbacher, W., Kierat, L., Blau, N. Clin. Chem. (2001) [Pubmed]
  38. Identification of metal ligands in Cu(II)-inhibited Chromobacterium violaceum phenylalanine hydroxylase by electron spin echo envelope modulation analysis of histidine to serine mutations. Balasubramanian, S., Carr, R.T., Bender, C.J., Peisach, J., Benkovic, S.J. Biochemistry (1994) [Pubmed]
WikiGenes - Universities