The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The role of lithium in modulation of brain genes: relevance for aetiology and treatment of bipolar disorder.

Bipolar disorder is a debilitating disorder of the brain with a lifetime prevalence of 1.0% for bipolar I, 1.1% for bipolar II disorder and 2.4-4.7% for subthreshold bipolar disorder. Medications, including lithium, have demonstrated efficacy in the treatment of bipolar disorder, but their molecular targets and mode of action are largely unknown. A few studies have begun to shed light on potential targets of lithium treatment that may be involved in lithium's therapeutic effect. We have recently conducted a microarray study of rat frontal cortex following chronic treatment (21 days) with lithium. Chronic treatment with lithium led to a significant (at least 1.5-fold) down-regulation of 151 genes and up-regulation of 57 genes. We discuss our results in the context of previous microarray studies involving lithium and gene-association studies to identify key genes associated with chronic lithium treatment. A number of genes associated with bipolar disorder, including Comt (catechol-O-methyltransferase), Vapa (vesicle-associated membrane protein-associated protein A), Dtnb (dystrobrevin beta) and Pkd1 (polycystic kidney disease 1), were significantly altered in our microarray dataset along with genes associated with synaptic transmission, apoptosis and transport among other functions.[1]

References

  1. The role of lithium in modulation of brain genes: relevance for aetiology and treatment of bipolar disorder. Fatemi, S.H., Reutiman, T.J., Folsom, T.D. Biochem. Soc. Trans. (2009) [Pubmed]
 
WikiGenes - Universities