The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Paclitaxel-resistance conferred by altered expression of efflux and influx transporters for paclitaxel in the human hepatoma cell line, HepG2.

Paclitaxel-resistant HepG2 (PR-HepG2) cells were established by long-term exposure of HepG2 cells to paclitaxel and expression and function of efflux (P-glycoprotein, MRP2) and influx (OATP1B3) transporters for paclitaxel were examined to understand the mechanisms underlying the resistance. mRNA expression of P-glycoprotein (P-gp) increased in PR-HepG2 more than in HepG2 cells, while that of MRP2 did not change. Interestingly, mRNA expression of OATP1B3 drastically decreased in PR-HepG2 cells. [(3)H]Paclitaxel uptake was less in PR-HepG2 than in HepG2 cells and the uptake in both cells increased by metabolic inhibition. The uptake of [(3)H]paclitaxel and rhodamine 123 increased by verapamil, a P-gp inhibitor. Probenecid, an MRP inhibitor, did not affect [(3)H]paclitaxel uptake in both cells. Sulfobromophthalein, an OATP1B3 inhibitor, inhibited [(3)H]paclitaxel uptake in HepG2 but not in PR-HepG2 cells. Cytotoxicity studies showed that the resistance of PR-HepG2 cells to paclitaxel was reversed by verapamil. PR-HepG2 cells showed cross-resistance to doxorubicin, a P-gp substrate, but not to cisplatin. These results indicate that enhanced expression and function of P-gp may be a predominant mechanism of paclitaxel resistance in PR-HepG2 cells and the reduced influx via OATP1B3 may also serve to lower intracellular paclitaxel concentration in cooperation with P-gp-mediated efflux.[1]

References

  1. Paclitaxel-resistance conferred by altered expression of efflux and influx transporters for paclitaxel in the human hepatoma cell line, HepG2. Takano, M., Otani, Y., Tanda, M., Kawami, M., Nagai, J., Yumoto, R. Drug Metab. Pharmacokinet. (2009) [Pubmed]
 
WikiGenes - Universities