The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Sialidase-based anti-influenza virus therapy protects against secondary pneumococcal infection.

BACKGROUND: DAS181 (Fludase) is a sialidase fusion protein in clinical development as a broad-spectrum anti-influenza virus (IFV) therapeutic agent. Previous reports by other investigators have raised the concern that desialylation of airway epithelium might increase susceptibility to Streptococcus pneumoniae infection. METHODS: To address whether DAS181 would lead to an increased risk of pneumococcal infection, we tested S. pneumoniae colonization after DAS181 treatment of human A549 cells, healthy mice, and mice challenged with a lethal dose of IFV A/PR/8/34 (H1N1) or A/Victoria/3/75 (H3N2), followed by 10(4) cfu of S. pneumoniae (D39) on day 3 or day 7. DAS181 treatment was given 24-48 h after IFV challenge. RESULTS: DAS181 treatment did not increase S. pneumoniae colonization in vitro or in vivo in healthy animals. In IFV-infected mice, DAS181 prevented pneumonia and significantly prolonged survival and inhibited the IFV titer by > or = 3 logs. None of the treated animals showed enhanced S. pneumoniae colonization of the lung. In addition, opportunistic infections with Citrobacter species or Klebsiella species occurred only in mice receiving vehicle, not in animals treated with DAS181. CONCLUSIONS: These data indicate that DAS181 treatment does not exacerbate secondary bacterial infection in mice. DAS181 may reduce the risk of secondary bacterial infection by inhibiting IFV.[1]

References

  1. Sialidase-based anti-influenza virus therapy protects against secondary pneumococcal infection. Hedlund, M., Aschenbrenner, L.M., Jensen, K., Larson, J.L., Fang, F. J. Infect. Dis. (2010) [Pubmed]
 
WikiGenes - Universities