The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Citrobacter


High impact information on Citrobacter

  • Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystalline HUO2PO4 [6].
  • In infected lymphotoxin-beta receptor -/- mice, anti- Citrobacter rodentium immunoglobulin G2a levels were decreased, whereas immunoglobulin G1 levels were increased [2].
  • Studies of changes in predominant aerobic fecal flora among the 11 subjects treated with bicozamycin showed the appearance of only one highly resistant Citrobacter freundii at the end of 1 wk of therapy and only a total of six resistant isolates at the end of 3 wk [7].
  • A Citrobacter sp. accumulates uranyl ion (UO2(2+)) as crystalline HUO2PO4.4H2O (HUP), using enzymatically generated inorganic phosphate [8].
  • Regulatory components in Citrobacter freundii ampC beta-lactamase induction [9].

Chemical compound and disease context of Citrobacter


Biological context of Citrobacter


Anatomical context of Citrobacter


Gene context of Citrobacter

  • Impaired resistance and enhanced pathology during infection with a noninvasive, attaching-effacing enteric bacterial pathogen, Citrobacter rodentium, in mice lacking IL-12 or IFN-gamma [23].
  • Neither the class C Citrobacter freundii CMY-2 AmpC beta-lactamase nor the class A TEM-1 beta-lactamase confer resistance to the beta-lactam antibiotic cefepime, nor do any of the naturally occurring alleles descended from them [24].
  • Typing by ERIC2-PCR indicated that the cefoxitin-resistant (FOXr) isolates were distinct. beta-Lactamase studies and hybridization experiments showed that most strains produced beta-lactamases related to the AmpC chromosomal cephalosporinase of Citrobacter freundii [25].
  • Inactivation of the ampD gene causes semiconstitutive overproduction of the inducible Citrobacter freundii beta-lactamase [26].
  • Analysis of beta-lactamase content by isoelectric focusing, PCR assays specific for various bla genes, and DNA sequencing showed that the strain produced TEM-1, a Citrobacter freundii AmpC-related cephalosporinase, and CTX-M-3 [27].

Analytical, diagnostic and therapeutic context of Citrobacter


  1. Tryptophanase of fecal flora as a possible factor in the etiology of colon cancer. Chung, K.T., Fulk, G.E., Slein, M.W. J. Natl. Cancer Inst. (1975) [Pubmed]
  2. The lymphotoxin-beta receptor is critical for control of murine Citrobacter rodentium-induced colitis. Spahn, T.W., Maaser, C., Eckmann, L., Heidemann, J., Lügering, A., Newberry, R., Domschke, W., Herbst, H., Kucharzik, T. Gastroenterology (2004) [Pubmed]
  3. Unusual microtubule-dependent endocytosis mechanisms triggered by Campylobacter jejuni and Citrobacter freundii. Oelschlaeger, T.A., Guerry, P., Kopecko, D.J. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  4. Inhibition of the hemolytic activity of the first component of complement C1 by an Escherichia coli C1q binding protein. van den Berg, R.H., Faber-Krol, M.C., van de Klundert, J.A., van Es, L.A., Daha, M.R. J. Immunol. (1996) [Pubmed]
  5. Crystals of tryptophan indole-lyase and tyrosine phenol-lyase form stable quinonoid complexes. Phillips, R.S., Demidkina, T.V., Zakomirdina, L.N., Bruno, S., Ronda, L., Mozzarelli, A. J. Biol. Chem. (2002) [Pubmed]
  6. Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystalline HUO2PO4. Macaskie, L.E., Empson, R.M., Cheetham, A.K., Grey, C.P., Skarnulis, A.J. Science (1992) [Pubmed]
  7. Efficacy of bicozamycin in preventing traveler's diarrhea. Ericsson, C.D., DuPont, H.L., Galindo, E., Mathewson, J.J., Morgan, D.R., Wood, L.V., Mendiola, J. Gastroenterology (1985) [Pubmed]
  8. Bioaccumulation of nickel by intercalation into polycrystalline hydrogen uranyl phosphate deposited via an enzymatic mechanism. Bonthrone, K.M., Basnakova, G., Lin, F., Macaskie, L.E. Nat. Biotechnol. (1996) [Pubmed]
  9. Regulatory components in Citrobacter freundii ampC beta-lactamase induction. Lindberg, F., Westman, L., Normark, S. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  10. Relationship of colonic mucosal background to neoplastic proliferative activity in dimethylhydrazine-treated mice. Barthold, S.W. Cancer Res. (1981) [Pubmed]
  11. An oligosaccharide-tetanus toxoid conjugate vaccine against type III group B Streptococcus. Paoletti, L.C., Kasper, D.L., Michon, F., DiFabio, J., Holme, K., Jennings, H.J., Wessels, M.R. J. Biol. Chem. (1990) [Pubmed]
  12. Hydrolysis of third-generation cephalosporins by class C beta-lactamases. Structures of a transition state analog of cefotoxamine in wild-type and extended spectrum enzymes. Nukaga, M., Kumar, S., Nukaga, K., Pratt, R.F., Knox, J.R. J. Biol. Chem. (2004) [Pubmed]
  13. Crystal structure of the Citrobacter freundii dihydroxyacetone kinase reveals an eight-stranded alpha-helical barrel ATP-binding domain. Siebold, C., Arnold, I., Garcia-Alles, L.F., Baumann, U., Erni, B. J. Biol. Chem. (2003) [Pubmed]
  14. Role of Ser-238 and Lys-240 in the hydrolysis of third-generation cephalosporins by SHV-type beta-lactamases probed by site-directed mutagenesis and three-dimensional modeling. Huletsky, A., Knox, J.R., Levesque, R.C. J. Biol. Chem. (1993) [Pubmed]
  15. Nucleotide sequence for the htpR gene from Citrobacter freundii. Garvin, L.D., Hardies, S.C. Nucleic Acids Res. (1989) [Pubmed]
  16. Citrobacter rodentium translocated intimin receptor (Tir) is an essential virulence factor needed for actin condensation, intestinal colonization and colonic hyperplasia in mice. Deng, W., Vallance, B.A., Li, Y., Puente, J.L., Finlay, B.B. Mol. Microbiol. (2003) [Pubmed]
  17. Interaction of E1040 with cephalosporinase from Citrobacter freundii GN7391. Inoue, E., Mitsuhashi, S. Antimicrob. Agents Chemother. (1989) [Pubmed]
  18. Novel class A beta-lactamase Sed-1 from Citrobacter sedlakii: genetic diversity of beta-lactamases within the Citrobacter genus. Petrella, S., Clermont, D., Casin, I., Jarlier, V., Sougakoff, W. Antimicrob. Agents Chemother. (2001) [Pubmed]
  19. Participation of quinone and cytochrome b in tetrathionate reductase respiratory chain of Citrobacter freundii. Novotný, C., Kaprálek, F. Biochem. J. (1979) [Pubmed]
  20. Modulation of host cytoskeleton function by the enteropathogenic Escherichia coli and Citrobacter rodentium effector protein EspG. Hardwidge, P.R., Deng, W., Vallance, B.A., Rodriguez-Escudero, I., Cid, V.J., Molina, M., Finlay, B.B. Infect. Immun. (2005) [Pubmed]
  21. Characterization of anti-Citrobacter 036 specific polysaccharide monoclonal antibodies. Shearman, P.J., Bundle, D.R., Romanowska, E., Lugowski, C., Bogulska, M. Can. J. Microbiol. (1984) [Pubmed]
  22. The influence of incubation conditions on the adherence of oral Enterobacteriaceae to HeLa cells. Sedgley, C.M., Samaranayake, L.P., Darvell, B.W. APMIS (1996) [Pubmed]
  23. Impaired resistance and enhanced pathology during infection with a noninvasive, attaching-effacing enteric bacterial pathogen, Citrobacter rodentium, in mice lacking IL-12 or IFN-gamma. Simmons, C.P., Goncalves, N.S., Ghaem-Maghami, M., Bajaj-Elliott, M., Clare, S., Neves, B., Frankel, G., Dougan, G., MacDonald, T.T. J. Immunol. (2002) [Pubmed]
  24. Experimental prediction of the evolution of cefepime resistance from the CMY-2 AmpC beta-lactamase. Barlow, M., Hall, B.G. Genetics (2003) [Pubmed]
  25. Transferable class C beta-lactamases in Escherichia coli strains isolated in Greek hospitals and characterization of two enzyme variants (LAT-3 and LAT-4) closely related to Citrobacter freundii AmpC beta-lactamase. Gazouli, M., Tzouvelekis, L.S., Vatopoulos, A.C., Tzelepi, E. J. Antimicrob. Chemother. (1998) [Pubmed]
  26. Inactivation of the ampD gene causes semiconstitutive overproduction of the inducible Citrobacter freundii beta-lactamase. Lindberg, F., Lindquist, S., Normark, S. J. Bacteriol. (1987) [Pubmed]
  27. CTX-m-3 beta-lactamase-producing Escherichia coli from Greece. Mavroidi, A., Tzelepi, E., Miriagou, V., Gianneli, D., Legakis, N.J., Tzouvelekis, L.S. Microb. Drug Resist. (2002) [Pubmed]
  28. Susceptibility of bacterial isolates to beta-lactam antibiotics from U.S. clinical trials over a 5-year period. Kessler, R.E., Fung-Tomc, J. Am. J. Med. (1996) [Pubmed]
  29. Site-directed mutagenesis of tyrosine-71 to phenylalanine in Citrobacter freundii tyrosine phenol-lyase: evidence for dual roles of tyrosine-71 as a general acid catalyst in the reaction mechanism and in cofactor binding. Chen, H.Y., Demidkina, T.V., Phillips, R.S. Biochemistry (1995) [Pubmed]
  30. Direct detection of eae-positive bacteria in human and veterinary colorectal specimens by PCR. Hubbard, A.L., Harrison, D.J., Moyes, C., McOrist, S. J. Clin. Microbiol. (1998) [Pubmed]
  31. Analysis of AmpC beta-lactamase expression and sequence in biochemically atypical ceftazidime-resistant Enterobacteriaceae from paediatric patients. Avison, M.B., Underwood, S., Okazaki, A., Walsh, T.R., Bennett, P.M. J. Antimicrob. Chemother. (2004) [Pubmed]
  32. Core region of Citrobacter O23 lipopolysaccharide. Structure elucidation by chemical methods, gas chromatography/mass spectrometry and NMR spectroscopy at 500 MHz. Katzenellenbogen, E., Gamian, A., Romanowska, E., Dabrowski, U., Dabrowski, J. Eur. J. Biochem. (1991) [Pubmed]
WikiGenes - Universities