The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Evolutionary relationships in the Drosophila ananassae species cluster based on introns of multiple nuclear loci.

The Drosophila ananassae species cluster includes D. ananassae, D. pallidosa, D. parapallidosa, and the cryptic species "pallidosa-like", "pallidosa-like Wau" and "papuensis-like" Some of the taxa are sympatric in the South Pacific, Papua New Guinea, and Southeast Asia, and gene flow between different taxa has been suspected for a handful of genes. In the present analysis, we examined DNA sequences of introns in four loci: alpha actinin (Actn) on XL, white (w) on XR, CG7785 on 2L, and zinc ion transmembrane transporter 63C (ZnT63C) on 2R. Phylogenetic trees (neighbor-joining and haplotype network) were inconsistent among these loci. Some haplotypes shared between taxa were found for w, CG7785, and ZnT63C, suggesting recent gene flow. However, no haplotypes were shared, for example, between D. ananassae and D. pallidosa for CG7785, which is close to the proximal breakpoint of In(2L)D. This suggests that taxon-specific inversions prevent gene flow, as predicted by the chromosomal speciation hypothesis.[1]

References

  1. Evolutionary relationships in the Drosophila ananassae species cluster based on introns of multiple nuclear loci. Sawamura, K., Kamiya, K., Sato, H., Tomimura, Y., Matsuda, M., Oguma, Y. Zool. Sci. (2010) [Pubmed]
 
WikiGenes - Universities