The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The human CCG1 gene, essential for progression of the G1 phase, encodes a 210-kilodalton nuclear DNA-binding protein.

The human CCG1 gene complements tsBN462, a temperature-sensitive G1 mutant of the BHK21 cell line. The previously cloned cDNA turned out to be a truncated form of the actual CCG1 cDNA. The newly cloned CCG1 cDNA was 6.0 kb and encoded a protein with a molecular mass of 210 kDa. Using an antibody to a predicted peptide from the CCG1 protein, a protein with a molecular mass of over 200 kDa was identified in human, monkey, and hamster cell lines. In the newly defined C-terminal region, an acidic domain was found. It contained four consensus target sequences for casein kinase II and was phosphorylated by this enzyme in vitro. However, this C-terminal region was not required to complement tsBN462 mutation since the region encoding the C-terminal part was frequently missing in complemented clones derived by DNA-mediated gene transfer. CCG1 contains a sequence similar to the putative DNA- binding domain of HMG1 in addition to the previously detected amino acid sequences common in nuclear proteins, such as a proline cluster and a nuclear translocation signal. Consistent with these predictions, CCG1 was present in nuclei, possessed DNA-binding activity, and was eluted with similar concentrations of salt, 0.3 to 0.4 M NaCl either from isolated nuclei or from a DNA-cellulose column.[1]

References

  1. The human CCG1 gene, essential for progression of the G1 phase, encodes a 210-kilodalton nuclear DNA-binding protein. Sekiguchi, T., Nohiro, Y., Nakamura, Y., Hisamoto, N., Nishimoto, T. Mol. Cell. Biol. (1991) [Pubmed]
 
WikiGenes - Universities