The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

HMGB1  -  high mobility group box 1

Homo sapiens

Synonyms: DKFZp686A04236, HMG-1, HMG1, HMG3, High mobility group protein 1, ...

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.


Disease relevance of HMGB1

  • In response to exogenous microbial products (such as endotoxin or CpG-DNA) or [1] endogenous host stimuli (e.g., TNF, IFN-gamma, or hydrogen peroxide), innate immune cells actively release HMGB1 into the extracellular space [2].
  • Apoptotic cells do not release HMGB1 even after undergoing secondary necrosis and partial autolysis, and thus fail to promote inflammation even if not cleared promptly by phagocytic cells [3].
  • Comparative analysis of the respective spot patterns on two-dimensional electrophoresis showed that HMGB1, an intranuclear protein that interacts with several transcription factors and plays a role in tumor metastasis after its secretion, was overexpressed in GISTs with KIT mutation [4].
  • Here we demonstrate that in contrast to the proinflammatory role of HMGB1, preconditioning with HMGB1 results in protection following hepatic ischemia/reperfusion (I/R) [5].
  • Treatment with cultured medium of HMGB1/amphoterin-secreting WiDr human colon cancer cells showed growth inhibition of both U937 and PMA-U937 cells and apoptosis in PMA-U937 cells [6].
  • Angiogenetic signaling through hypoxia: HMGB1: an angiogenetic switch molecule [7].
  • Anti-HMGB1 antibodies are protective in animal models of lethal systemic inflammatory diseases, such as endotoxemia [1] and sepsis [8].
  • In light of the pathogenic role of inflammation in cardiovascular diseases, we propose that HMGB1, a proinflammatory cytokine derived from both injured endothelium and activated macrophages/monocytes, could contribute to the progression of atherosclerosis and other cardiovascular diseases [9].
  • Additional work is needed to understand the biological activities of serum HMGB1 in sepsis [10].
  • This review focuses on current knowledge and speculation on the role of HMGB1 in the development of cancer, metastasis, and potential targets for therapy [11].
  • We propose that HMGB1 plays an important role in Gram-negative sepsis by catalyzing movement of LPS monomers from LPS aggregates to CD14 to initiate a TLR4-mediated proinflammatory response [12].

Psychiatry related information on HMGB1


High impact information on HMGB1


Chemical compound and disease context of HMGB1

  • The effects of HMGB1 overexpression in a BG-1 ovarian cancer cell line, induced by steroid hormones, on the sensitivity of cells treated with [Pt(1R,2R-diaminocyclohexane)Cl(2)] and cis-[Pt(NH(3))(cyclohexylamine)Cl(2)] were also examined [19].
  • The 2--3-fold increase in HMGB1 expression observed in proliferating cells or breast cancer cells stimulated by estrogen may probably result from the action of the enhancer elements in intron 1 [20].
  • The present study was therefore undertaken to investigate how HMGB-1 is expressed in muscle tissue of patients with myositis and, if so, whether such expression is modulated by prednisolone therapy [21].
  • In vivo, treatment with nicotine attenuates serum HMGB1 levels and improves survival in experimental models of sepsis, even when treatment is started after the onset of the disease [22].
  • These results reveal acetylcholine as the first known physiological inhibitor of HMGB1 release from human macrophages and suggest that selective nicotinic agonists for the alpha7nAChR might have therapeutic potential for the treatment of sepsis [22].

Biological context of HMGB1


Anatomical context of HMGB1


Associations of HMGB1 with chemical compounds


Physical interactions of HMGB1

  • The role of the C-terminal extension (CTE) of the estrogen receptor alpha and beta DNA binding domain in DNA binding and interaction with HMGB [35].
  • High mobility group protein 1 interacts specifically with the core domain of human TATA box-binding protein and interferes with transcription factor IIB within the pre-initiation complex [36].
  • Only the full-length p53 can form stable ternary complexes with hcDNA and HMGB1 [37].
  • Here we show that the RAG1 homeodomain directly interacts with both HMG boxes of HMG1 and HMG2 (HMG1,2) [38].
  • In addition, HMG1 bound to Abeta (1-42) and stabilized the oligomerization [39].
  • HMGB1 can interact with the retinoblastoma susceptibility protein (pRb), and this inteaction is critical for HMGB1-mediated inhibition of tumor cell proliferation [40].

Enzymatic interactions of HMGB1

  • Surprisingly, in the course of these studies we found that in vivo radiolabeling experiments revealed that only two minor HMG-14 subspecies (and/or possibly a minor HMG-I subspecies) are phosphorylated whereas HMG-1, -2, -17, and the major HMG-14 are not heavily phosphorylated [41].
  • These results indicate that casein kinase II is the enzyme which catalyzes the major phosphorylation of hHMG protein which occurs in vivo [42].

Regulatory relationships of HMGB1

  • Similarly, in primary human macrophages, HMGB1-induced TNF release is dose-dependently inhibited by anti-TLR4 antibodies [43].
  • Using EMSAs, both HMGB proteins are shown to enhance ER binding and induce cooperative ER binding on tandem ERE elements [44].
  • In addition, the HMGB1-induced migration of EPCs on fibronectin and fibrinogen was significantly inhibited by antibodies against beta1 and beta2 integrins, respectively [31].
  • In an in vitro transcription assay reconstituted with highly purified or recombinant general factors, HMG1 is able to inhibit transcription by RNA polymerase II over 30-fold [45].
  • CONCLUSION: HMGB-1 was more strongly expressed in SF of RA patients than in that of OA patients, inducing the release of proinflammatory cytokines from SFMs [46].
  • While HMGB1 attenuates excision by activated Exo1, this effect is distinct from that mediated by RPA [47].

Other interactions of HMGB1

  • Finally, using transient transfection assays we show that HMG-1 can increase p53 and p53Delta30-mediated transactivation in vivo [48].
  • In transient-transfection assays, coexpression of HMG-1 or HMG-2 increased PR-mediated transcription in mammalian cells by as much as 7- to 10-fold without altering the basal promoter activity of target reporter genes [49].
  • The phosphorylation sites have been mapped to the acidic C-terminal domains by analysis of tryptic peptides derived from HMGB1 and HMGB2/3 using nanospray ion trap mass spectrometry [50].
  • Double-stranded oligonucleotides containing the AG*G*C sequence, where the asterisks denote the sites of platination, with different spectator ligands are only moderately discriminated by the HMGB proteins and TBP, but the recognition of dsTG*G*A is highly dependent on the ligands [19].
  • We thus explored the possibility that HMGB1 preconditioning was mediated through TLR4 activation [5].
  • Impairment of Hsp72-DeltaNLS nuclear translocation, or Hsp72-DeltaPBD-HMGB1 interaction in the nucleus, abrogated Hsp72-mediated suppression of HMGB1 cytoplasmic translocation and release [51].

Analytical, diagnostic and therapeutic context of HMGB1

  • A major component of Green tea (Camellia sinensis ), the epigallocatechin (EGCG), can inhibit bacterial endotoxin-induced HMGB1 release by macrophage cultures, and protect animals against experimental sepsis [52].
  • A major component of Danshen (Salvia miltiorrhiza), tanshinone, can also inhibit bacterial endotoxin-induced HMGB1 release by macrophage cultures, and protect animals against experimental sepsis [53].
  • The overexpression of HMGB1 was further supported by Western blot analysis, and directly related to matrix metalloproteinase 2 overexpression [4].
  • Electrophoretic mobility shift assays show that both the A and B domains of HMGB1 as well as TBP discriminate between different platinum-DNA adducts [19].
  • Although this protein was not detected in the plasma of control humans or mice, the concentrations of HMGB1 in lung epithelial lining fluid or in bronchoalveolar lavage fluid were unexpectedly high [54].
  • We found that serum/plasma components bind to HMGB1 and interfere with its detection by ELISA systems [55].
  • Here, we describe sensitive ELISAs for the detection of HMGB1 in cell culture medium and cell lysates [55].


  1. HMG-1 as a late mediator of endotoxin lethality in mice. Wang, H., Bloom, O., Zhang, M., Vishnubhakat, J.M., Ombrellino, M., Che, J., Frazier, A., Yang, H., Ivanova, S., Borovikova, L., Manogue, K.R., Faist, E., Abraham, E., Andersson, J., Andersson, U., Molina, P.E., Abumrad, N.N., Sama, A., Tracey, K.J. Science. (1999) [Pubmed]
  2. Therapeutic potential of HMGB1-targeting agents in sepsis. Wang, H., Zhu, S., Zhou, R., Li, W., Sama, A.E. Expert. Rev. Mol. Med. (2008) [Pubmed]
  3. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Scaffidi, P., Misteli, T., Bianchi, M.E. Nature (2002) [Pubmed]
  4. Overexpression of high mobility group box 1 in gastrointestinal stromal tumors with KIT mutation. Choi, Y.R., Kim, H., Kang, H.J., Kim, N.G., Kim, J.J., Park, K.S., Paik, Y.K., Kim, H.O., Kim, H. Cancer Res. (2003) [Pubmed]
  5. Cutting edge: high-mobility group box 1 preconditioning protects against liver ischemia-reperfusion injury. Izuishi, K., Tsung, A., Jeyabalan, G., Critchlow, N.D., Li, J., Tracey, K.J., Demarco, R.A., Lotze, M.T., Fink, M.P., Geller, D.A., Billiar, T.R. J. Immunol. (2006) [Pubmed]
  6. Colon cancer cell-derived high mobility group 1/amphoterin induces growth inhibition and apoptosis in macrophages. Kuniyasu, H., Yano, S., Sasaki, T., Sasahira, T., Sone, S., Ohmori, H. Am. J. Pathol. (2005) [Pubmed]
  7. Angiogenetic signaling through hypoxia: HMGB1: an angiogenetic switch molecule. Schlueter, C., Weber, H., Meyer, B., Rogalla, P., Röser, K., Hauke, S., Bullerdiek, J. Am. J. Pathol. (2005) [Pubmed]
  8. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Yang, H., Ochani, M., Li, J., Qiang, X., Tanovic, M., Harris, H.E., Susarla, S.M., Ulloa, L., Wang, H., DiRaimo, R., Czura, C.J., Wang, H., Roth, J., Warren, H.S., Fink, M.P., Fenton, M.J., Andersson, U., Tracey, K.J. Proc. Natl. Acad. Sci. U. S. A. (2004) [Pubmed]
  9. Role of HMGB1 in cardiovascular diseases. Li, W., Sama, A.E., Wang, H. Curr. Opin. Pharmacol (2006) [Pubmed]
  10. Circulating high-mobility group box 1 (HMGB1) concentrations are elevated in both uncomplicated pneumonia and pneumonia with severe sepsis. Angus, D.C., Yang, L., Kong, L., Kellum, J.A., Delude, R.L., Tracey, K.J., Weissfeld, L. Crit. Care Med. (2007) [Pubmed]
  11. Masquerader: high mobility group box-1 and cancer. Ellerman, J.E., Brown, C.K., de Vera, M., Zeh, H.J., Billiar, T., Rubartelli, A., Lotze, M.T. Clin. Cancer Res. (2007) [Pubmed]
  12. High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-alpha production in human monocytes. Youn, J.H., Oh, Y.J., Kim, E.S., Choi, J.E., Shin, J.S. J. Immunol. (2008) [Pubmed]
  13. alpha-Synuclein filaments bind the transcriptional regulator HMGB-1. Lindersson, E.K., Højrup, P., Gai, W.P., Locker, D., Martin, D., Jensen, P.H. Neuroreport (2004) [Pubmed]
  14. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Grant, S.F., Thorleifsson, G., Reynisdottir, I., Benediktsson, R., Manolescu, A., Sainz, J., Helgason, A., Stefansson, H., Emilsson, V., Helgadottir, A., Styrkarsdottir, U., Magnusson, K.P., Walters, G.B., Palsdottir, E., Jonsdottir, T., Gudmundsdottir, T., Gylfason, A., Saemundsdottir, J., Wilensky, R.L., Reilly, M.P., Rader, D.J., Bagger, Y., Christiansen, C., Gudnason, V., Sigurdsson, G., Thorsteinsdottir, U., Gulcher, J.R., Kong, A., Stefansson, K. Nat. Genet. (2006) [Pubmed]
  15. Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumours. Schoenmakers, E.F., Wanschura, S., Mols, R., Bullerdiek, J., Van den Berghe, H., Van de Ven, W.J. Nat. Genet. (1995) [Pubmed]
  16. Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex. Werner, M.H., Huth, J.R., Gronenborn, A.M., Clore, G.M. Cell (1995) [Pubmed]
  17. The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene. Thanos, D., Maniatis, T. Cell (1992) [Pubmed]
  18. Microinjection of the nonhistone chromosomal protein HMG1 into bovine fibroblasts and HeLa cells. Rechsteiner, M., Kuehl, L. Cell (1979) [Pubmed]
  19. Effects of spectator ligands on the specific recognition of intrastrand platinum-DNA cross-links by high mobility group box and TATA-binding proteins. Wei, M., Cohen, S.M., Silverman, A.P., Lippard, S.J. J. Biol. Chem. (2001) [Pubmed]
  20. The human HMGB1 promoter is modulated by a silencer and an enhancer-containing intron. Lum, H.K., Lee, K.L. Biochim. Biophys. Acta (2001) [Pubmed]
  21. Down-regulation of the aberrant expression of the inflammation mediator high mobility group box chromosomal protein 1 in muscle tissue of patients with polymyositis and dermatomyositis treated with corticosteroids. Ulfgren, A.K., Grundtman, C., Borg, K., Alexanderson, H., Andersson, U., Harris, H.E., Lundberg, I.E. Arthritis Rheum. (2004) [Pubmed]
  22. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Wang, H., Liao, H., Ochani, M., Justiniani, M., Lin, X., Yang, L., Al-Abed, Y., Wang, H., Metz, C., Miller, E.J., Tracey, K.J., Ulloa, L. Nat. Med. (2004) [Pubmed]
  23. Association of chromatin proteins high mobility group box (HMGB) 1 and HMGB2 with mitotic chromosomes. Pallier, C., Scaffidi, P., Chopineau-Proust, S., Agresti, A., Nordmann, P., Bianchi, M.E., Marechal, V. Mol. Biol. Cell (2003) [Pubmed]
  24. Nucleocytoplasmic Shuttling of HMGB1 Is Regulated by Phosphorylation That Redirects It toward Secretion. Youn, J.H., Shin, J.S. J. Immunol. (2006) [Pubmed]
  25. HMGB1 and HMGB2 cell-specifically down-regulate the p53- and p73-dependent sequence-specific transactivation from the human Bax gene promoter. Stros, M., Ozaki, T., Bacikova, A., Kageyama, H., Nakagawara, A. J. Biol. Chem. (2002) [Pubmed]
  26. High Mobility Group B1 Protein Suppresses the Human Plasmacytoid Dendritic Cell Response to TLR9 Agonists. Popovic, P.J., Demarco, R., Lotze, M.T., Winikoff, S.E., Bartlett, D.L., Krieg, A.M., Guo, Z.S., Brown, C.K., Tracey, K.J., Zeh, H.J. J. Immunol. (2006) [Pubmed]
  27. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. Bonaldi, T., Talamo, F., Scaffidi, P., Ferrera, D., Porto, A., Bachi, A., Rubartelli, A., Agresti, A., Bianchi, M.E. EMBO J. (2003) [Pubmed]
  28. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Fiuza, C., Bustin, M., Talwar, S., Tropea, M., Gerstenberger, E., Shelhamer, J.H., Suffredini, A.F. Blood (2003) [Pubmed]
  29. The role of IFN-alpha and nitric oxide in the release of HMGB1 by RAW 264.7 cells stimulated with polyinosinic-polycytidylic acid or lipopolysaccharide. Jiang, W., Pisetsky, D.S. J. Immunol. (2006) [Pubmed]
  30. HMGB1 activates replication of latent HIV-1 in a monocytic cell-line, but inhibits HIV-1 replication in primary macrophages. Nowak, P., Barqasho, B., Treutiger, C.J., Harris, H.E., Tracey, K.J., Andersson, J., Sönnerborg, A. Cytokine (2006) [Pubmed]
  31. High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells. Chavakis, E., Hain, A., Vinci, M., Carmona, G., Bianchi, M.E., Vajkoczy, P., Zeiher, A.M., Chavakis, T., Dimmeler, S. Circ. Res. (2007) [Pubmed]
  32. HMGB1 develops enhanced proinflammatory activity by binding to cytokines. Sha, Y., Zmijewski, J., Xu, Z., Abraham, E. J. Immunol. (2008) [Pubmed]
  33. Release of HMGB1 in response to proapoptotic glioma killing strategies: efficacy and neurotoxicity. Candolfi, M., Yagiz, K., Foulad, D., Alzadeh, G.E., Tesarfreund, M., Muhammad, A.K., Puntel, M., Kroeger, K.M., Liu, C., Lee, S., Curtin, J.F., King, G.D., Lerner, J., Sato, K., Mineharu, Y., Xiong, W., Lowenstein, P.R., Castro, M.G. Clin. Cancer Res. (2009) [Pubmed]
  34. Molecular forms of HMGB1 and keratin-18 as mechanistic biomarkers for mode of cell death and prognosis during clinical acetaminophen hepatotoxicity. Antoine, D.J., Jenkins, R.E., Dear, J.W., Williams, D.P., McGill, M.R., Sharpe, M.R., Craig, D.G., Simpson, K.J., Jaeschke, H., Park, B.K. J. Hepatol. (2012) [Pubmed]
  35. The role of the C-terminal extension (CTE) of the estrogen receptor alpha and beta DNA binding domain in DNA binding and interaction with HMGB. Melvin, V.S., Harrell, C., Adelman, J.S., Kraus, W.L., Churchill, M., Edwards, D.P. J. Biol. Chem. (2004) [Pubmed]
  36. High mobility group protein 1 interacts specifically with the core domain of human TATA box-binding protein and interferes with transcription factor IIB within the pre-initiation complex. Sutrias-Grau, M., Bianchi, M.E., Bernués, J. J. Biol. Chem. (1999) [Pubmed]
  37. High-affinity binding of tumor-suppressor protein p53 and HMGB1 to hemicatenated DNA loops. Stros, M., Muselíková-Polanská, E., Pospísilová, S., Strauss, F. Biochemistry (2004) [Pubmed]
  38. The RAG1 homeodomain recruits HMG1 and HMG2 to facilitate recombination signal sequence binding and to enhance the intrinsic DNA-bending activity of RAG1-RAG2. Aidinis, V., Bonaldi, T., Beltrame, M., Santagata, S., Bianchi, M.E., Spanopoulou, E. Mol. Cell. Biol. (1999) [Pubmed]
  39. Role of high mobility group protein-1 (HMG1) in amyloid-beta homeostasis. Takata, K., Kitamura, Y., Kakimura, J., Shibagaki, K., Tsuchiya, D., Taniguchi, T., Smith, M.A., Perry, G., Shimohama, S. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
  40. Growth suppression and radiosensitivity increase by HMGB1 in breast cancer. Jiao, Y., Wang, H.C., Fan, S.J. Acta. Pharmacol. Sin. (2007) [Pubmed]
  41. Purification and postsynthetic modifications of Friend erythroleukemic cell high mobility group protein HMG-I. Elton, T.S., Reeves, R. Anal. Biochem. (1986) [Pubmed]
  42. Identity of the in vivo phosphorylation site in high mobility group 14 protein in HeLa cells with the site phosphorylated by casein kinase II in vitro. Walton, G.M., Gill, G.N. J. Biol. Chem. (1983) [Pubmed]
  43. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Yu, M., Wang, H., Ding, A., Golenbock, D.T., Latz, E., Czura, C.J., Fenton, M.J., Tracey, K.J., Yang, H. Shock (2006) [Pubmed]
  44. High mobility group B proteins facilitate strong estrogen receptor binding to classical and half-site estrogen response elements and relax binding selectivity. Das, D., Peterson, R.C., Scovell, W.M. Mol. Endocrinol. (2004) [Pubmed]
  45. The high mobility group protein HMG1 can reversibly inhibit class II gene transcription by interaction with the TATA-binding protein. Ge, H., Roeder, R.G. J. Biol. Chem. (1994) [Pubmed]
  46. High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Taniguchi, N., Kawahara, K., Yone, K., Hashiguchi, T., Yamakuchi, M., Goto, M., Inoue, K., Yamada, S., Ijiri, K., Matsunaga, S., Nakajima, T., Komiya, S., Maruyama, I. Arthritis Rheum. (2003) [Pubmed]
  47. Functions of MutLalpha, replication protein A (RPA), and HMGB1 in 5'-directed mismatch repair. Genschel, J., Modrich, P. J. Biol. Chem. (2009) [Pubmed]
  48. High mobility group protein-1 (HMG-1) is a unique activator of p53. Jayaraman, L., Moorthy, N.C., Murthy, K.G., Manley, J.L., Bustin, M., Prives, C. Genes Dev. (1998) [Pubmed]
  49. High-mobility group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Boonyaratanakornkit, V., Melvin, V., Prendergast, P., Altmann, M., Ronfani, L., Bianchi, M.E., Taraseviciene, L., Nordeen, S.K., Allegretto, E.A., Edwards, D.P. Mol. Cell. Biol. (1998) [Pubmed]
  50. Protein kinase CK2 differentially phosphorylates maize chromosomal high mobility group B (HMGB) proteins modulating their stability and DNA interactions. Stemmer, C., Schwander, A., Bauw, G., Fojan, P., Grasser, K.D. J. Biol. Chem. (2002) [Pubmed]
  51. Nuclear heat shock protein 72 as a negative regulator of oxidative stress (hydrogen peroxide)-induced HMGB1 cytoplasmic translocation and release. Tang, D., Kang, R., Xiao, W., Jiang, L., Liu, M., Shi, Y., Wang, K., Wang, H., Xiao, X. J. Immunol. (2007) [Pubmed]
  52. A major ingredient of green tea rescues mice from lethal sepsis partly by inhibiting HMGB1. Li, W., Ashok, M., Li, J., Yang, H., Sama, A.E., Wang, H. PLoS. One. (2007) [Pubmed]
  53. A cardiovascular drug rescues mice from lethal sepsis by selectively attenuating a late-acting proinflammatory mediator, high mobility group box 1. Li, W., Li, J., Ashok, M., Wu, R., Chen, D., Yang, L., Yang, H., Tracey, K.J., Wang, P., Sama, A.E., Wang, H. J. Immunol. (2007) [Pubmed]
  54. Contributions of high mobility group box protein in experimental and clinical acute lung injury. Ueno, H., Matsuda, T., Hashimoto, S., Amaya, F., Kitamura, Y., Tanaka, M., Kobayashi, A., Maruyama, I., Yamada, S., Hasegawa, N., Soejima, J., Koh, H., Ishizaka, A. Am. J. Respir. Crit. Care Med. (2004) [Pubmed]
  55. Factors masking HMGB1 in human serum and plasma. Urbonaviciute, V., F??rnrohr, B.G., Weber, C., Haslbeck, M., Wilhelm, S., Herrmann, M., Voll, R.E. J. Leukoc. Biol. (2007) [Pubmed]
WikiGenes - Universities