Physiological role of alkaline phosphatase explored in hypophosphatasia.
Hypophosphatasia (HPP) is the instructive rickets or osteomalacia caused by loss-of-function mutation(s) within TNSALP, the gene that encodes the "tissue nonspecific" isoenzyme of alkaline phosphatase (TNSALP). HPP reveals a critical role for this enzyme in skeletal mineralization. Increased extracellular levels of pyridoxal 5'-phosphate and inorganic pyrophosphate (PP(i)) demonstrate that TNSALP is a phosphomonoester phosphohydrolase and a pyrophosphatase that hydrolyzes much lower concentrations of natural substrates than the artificial substrates of laboratory assays. Clearly, TNSALP acts at physiological pH and "alkaline phosphatase" is a misnomer. Aberrations of vitamin B(6) metabolism in HPP revealed that TNSALP is an ectoenzyme. PP(i) excesses cause chondrocalcinosis and sometimes arthropathy. The skeletal disease is due to PP(i) inhibition of hydroxyapatite crystal growth extracellularly so that crystals form within matrix vesicles but fail to enlarge after these structures rupture. Trials of alkaline phosphatase replacement therapy for HPP suggest that TNSALP functions at the level of skeletal tissues.[1]References
- Physiological role of alkaline phosphatase explored in hypophosphatasia. Whyte, M.P. Ann. N. Y. Acad. Sci. (2010) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg