The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cloning and functional analysis of the ubiquitin-specific protease gene UBP1 of Saccharomyces cerevisiae.

In eukaryotes, both natural and engineered fusions of ubiquitin to itself or other proteins are cleaved by processing proteases after the last (Gly76) residue of ubiquitin. Using the method of sib selection, and taking advantage of the fact that bacteria such as Escherichia coli lack ubiquitin-specific enzymes, we have cloned a gene, named UBP1, of the yeast Saccharomyces cerevisiae that encodes a ubiquitin-specific processing protease. With the exception of polyubiquitin, the UBP1 protease cleaves at the carboxyl terminus of the ubiquitin moiety in natural and engineered fusions irrespective of their size or the presence of an amino-terminal ubiquitin extension. These properties of UBP1 distinguish it from the previously cloned yeast protease YUH1, which deubiquitinates relatively short ubiquitin fusions but is virtually inactive with longer fusions such as ubiquitin-beta-galactosidase. The amino acid sequence of the 809-residue UBP1 lacks significant similarities to other known proteins, including the 236-residue YUH1 protease. Null ubp1 mutants are viable, and retain the ability to deubiquitinate ubiquitin-beta-galactosidase, indicating that the family of ubiquitin-specific proteases in yeast is not limited to UBP1 and YUH1.[1]

References

 
WikiGenes - Universities