Exercise endurance and arterial desaturation in normobaric hypoxia with increased chemosensitivity.
We studied whether exercise endurance under normobaric hypoxia can be enhanced by increasing hypoxic ventilatory sensitivity with almitrine bismesylate (ALM). On both ALM and placebo (PL) days, resting subjects breathed a hypoxic gas mixture (an inspired O2 fraction of 10.4-13.2%), which lowered resting arterial O2 saturation (SaO2) to 80%. After 15 min of rest there was a 3-min warm-up period of exercise at 50 W (light) on a cycle ergometer, followed by a step increase in load to 60% of the previously determined maximum power output with room-air breathing (moderate), which was maintained until exhaustion. With PL, SaO2 decreased rapidly with the onset of exercise and continued to fall slowly during moderate exercise, averaging 71.0 +/- 1.8% (SE) at exhaustion. With ALM, saturation did not differ from PL during air breathing but significantly exceeded SaO2 with PL, by 3.4% during resting hypoxia, by 4.0% at the start of exercise, and by 5.9% at exhaustion. Ventilation was not affected by ALM during air breathing and was slightly, although not significantly, increased during hypoxic rest and exercise. ALM was associated with an increased heart rate during room air breathing but not during hypoxia. Endurance time was 20.6 +/- 1.6 min with ALM and 21.3 +/- 0.9 min with PL. During hypoxic exercise, the potential benefit of greater saturation with ALM is apparently offset by other unidentified factors.[1]References
- Exercise endurance and arterial desaturation in normobaric hypoxia with increased chemosensitivity. Giesbrecht, G.G., Puddy, A., Ahmed, M., Younes, M., Anthonisen, N.R. J. Appl. Physiol. (1991) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg