N-[(arylmethoxy)phenyl] carboxylic acids, hydroxamic acids, tetrazoles, and sulfonyl carboxamides. Potent orally active leukotriene D4 antagonists of novel structure.
Four series of N-[(arylmethoxy)phenyl] compounds were prepared as leukotriene D4 (LTD4) antagonists. In the hydroxamic acid series, methyl 3-(2-quinolinylmethoxy)benzeneacetohydroxamate (Wy-48,422, 20) was the most potent inhibitor of LTD4-induced bronchoconstriction with an oral ED50 of 7.9 mg/kg. Compound 20 also orally inhibited ovalbumin-induced bronchoconstriction in the guinea pig with an ED50 of 3.6 mg/kg. In vitro, against LTD4-induced contraction of isolated guinea pig trachea pretreated with indomethacin and 1-cysteine, 20 produced a pKB value of 6.08. In the sulfonyl carboxamide series, N-[(4-methylphenyl)sulfonyl]-3-(2-quinolinylmethoxy)-benzamide (Wy-49,353, 30) was the most potent antagonist. Compound 30 orally inhibited both LTD4- and ovalbumin-induced bronchoconstriction with ED50s of 0.4 and 20.2 mg/kg, respectively. In vitro, against LTD4-induced contraction of isolated guinea pig trachea, 30 produced a pKB value of 7.78. In the carboxylic acid series, which served as intermediates for the above two series, 3-(2-quinolinylmethoxy)benzeneacetic acid (Wy-46,016, 5) was the most potent inhibitor of LTD4-induced bronchoconstriction (99% at 25 mg/kg, intraduodenally); however, the pKB for this compound was disappointing (5.79). In the tetrazole series, the most potent inhibitor was 2-[[3-(1H-tetrazol-5-ylmethyl)phenoxy]methyl]quinoline (Wy-49,451, 41). The respective inhibitory ED50s were 3.0 mg/kg versus LTD4 and 17.5 mg/kg versus ovalbumin. In the isolated guinea pig trachea, 41 produced a pKB value of 6.70.[1]References
- N-[(arylmethoxy)phenyl] carboxylic acids, hydroxamic acids, tetrazoles, and sulfonyl carboxamides. Potent orally active leukotriene D4 antagonists of novel structure. Musser, J.H., Kreft, A.F., Bender, R.H., Kubrak, D.M., Grimes, D., Carlson, R.P., Hand, J.M., Chang, J. J. Med. Chem. (1990) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg