The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Modification of ATP regulatory function in sarcoplasmic reticulum Ca2(+)-ATPase by hydrophobic molecules.

The effects of the three hydrophobic molecules triphenylphosphine, trifluoperazine and 3-nitrophenol on Ca2+ uptake and ATPase activity in sarcoplasmic reticulum vesicles was investigated. When ATP was the substrate, triphenylphosphine (3 microM) increased the amount of Ca2+ accumulated by the vesicles. At high concentrations triphenylphosphine inhibited Ca2+ uptake. This effect varied depending on the ATP concentration and the type of nucleotide used. With ITP there was only inhibition and no activation of Ca2+ uptake by triphenylphosphine. On the other hand, trifluoperazine inhibited Ca2+ accumulation regardless of whether ATP or ITP was used as substrate. When 5 mM oxalate was included in the medium in order to avoid binding of Ca2+ to the low-affinity Ca2(+)-binding sites of the enzyme, both stimulation by triphenylphosphine and inhibition by trifluoperazine were reduced. In leaky vesicles at low Ca2+ concentrations, triphenylphosphine and 3-nitrophenol were competitive inhibitors of ATPase activity at the regulatory site of the enzyme (0.1-1 mM ATP). A striking difference was observed when both the high- and low-affinity Ca2(+)-binding sites were saturated. In this condition, triphenylphosphine and 3-nitrophenol promoted a 3-4-fold increase in the apparent affinity for ATP at its regulatory site.[1]


WikiGenes - Universities