The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Trifenylfosfin     triphenylphosphane

Synonyms: NSC-10, PubChem6417, NSC10, ACMC-1BGGS, CCRIS 4889, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of triphenylphosphane


High impact information on triphenylphosphane


Biological context of triphenylphosphane

  • When the pre-existing lipid peroxides (LOOH) were removed by incorporating triphenylphosphine into liposomes, Fe(2+) could no longer initiate lipid peroxidation and the acceleration of Fe(2+) oxidation by the liposomes disappeared [9].
  • Wittig condensation of 2-acetamido-6-formyl-4-pyrimidinol with the triphenylphosphine ylide 3 derived from N-acetyl-4-(p-carbethoxyanilino)-1-chloro-2-butanone, hydrogenation of the enone intermediate 5, introduction of a 5-amino group via diazonium coupling, and reductive ring closure yielded ethyl N11-acetyl-8-deazahomopteroate (8) [10].
  • Kinetics of the oxidation of triphenylphosphine by nitric oxide [11].
  • The reactive sites of these complexes in CO substitution reactions have been determined by studying the reactivity of 1 with triphenylphosphine [12].
  • Oxygen atom transfer from (mes)(3)Ir=O and dioxygen activation by (mes)(3)Ir can be combined to allow catalytic aerobic oxidations of triphenylphosphine at room temperature and atmospheric pressure with overall activity (approximately 60 turnovers/h) comparable to the fastest reported catalysts [13].

Anatomical context of triphenylphosphane

  • The effects of the three hydrophobic molecules triphenylphosphine, trifluoperazine and 3-nitrophenol on Ca2+ uptake and ATPase activity in sarcoplasmic reticulum vesicles was investigated [14].
  • Formation of conjugated dienes (CD), the conversion of triphenylphosphine (TPP) to its oxide (TPPO), and the simultaneous production of hydroxy polyunsaturated fatty acids (PUFA-OHs) from these corresponding PUFAs hydroperoxides (PUFA-OOHs) were analyzed in the total lipid extract of ZR cells and of normal human skin fibroblasts (CCD-41Sk:Sk) [15].

Associations of triphenylphosphane with other chemical compounds


Gene context of triphenylphosphane


Analytical, diagnostic and therapeutic context of triphenylphosphane


  1. Saccharinate as a versatile polyfunctional ligand. Four distinct coordination modes, misdirected valence, and a dominant aggregate structure from a single reaction system. Falvello, L.R., Gomez, J., Pascual, I., Tomás, M., Urriolabeitia, E.P., Schultz, A.J. Inorganic chemistry. (2001) [Pubmed]
  2. Acute and subacute inhalation toxicities of phosphine, phenylphosphine and triphenylphosphine. Waritz, R.S., Brown, R.M. American Industrial Hygiene Association journal. (1975) [Pubmed]
  3. Relationship of hypolipidemic and antineoplastic activities of tricyclohexyl- and triphenylphosphine boranes, carboxyboranes, cyanoboranes, and related derivatives. Das, M.K., Maiti, P.K., Roy, S., Mittakanti, M., Morse, K.W., Hall, I.H. Arch. Pharm. (Weinheim) (1992) [Pubmed]
  4. Activation of Ca2+ uptake and inhibition of reversal of the sarcoplasmic reticulum Ca2+ pump by aromatic compounds. Petretski, J.H., Wolosker, H., de Meis, L. J. Biol. Chem. (1989) [Pubmed]
  5. Stepwise delivery of two methoxy groups of arylaldehyde acetals across the phenyl ring. Vacant site-controlled palladium catalysis. Nakamura, I., Mizushima, Y., Gridnev, I.D., Yamamoto, Y. J. Am. Chem. Soc. (2005) [Pubmed]
  6. Thiol-functionalized, 1.5-nm gold nanoparticles through ligand exchange reactions: scope and mechanism of ligand exchange. Woehrle, G.H., Brown, L.O., Hutchison, J.E. J. Am. Chem. Soc. (2005) [Pubmed]
  7. Anticancer cyclometalated [Au(III)m(C(wedge)N(wedge)C)mL]n+ compounds: Synthesis and cytotoxic properties. Li, C.K., Sun, R.W., Kui, S.C., Zhu, N., Che, C.M. Chemistry (Weinheim an der Bergstrasse, Germany) (2006) [Pubmed]
  8. Structure and reactivity of homoleptic samarium(II) and thulium(II) phospholyl complexes. Turcitu, D., Nief, F., Ricard, L. Chemistry (Weinheim an der Bergstrasse, Germany) (2003) [Pubmed]
  9. The mechanism of Fe(2+)-initiated lipid peroxidation in liposomes: the dual function of ferrous ions, the roles of the pre-existing lipid peroxides and the lipid peroxyl radical. Tang, L., Zhang, Y., Qian, Z., Shen, X. Biochem. J. (2000) [Pubmed]
  10. Synthesis and biological evaluation of 8-deazahomofolic acid and its tetrahydro derivative. DeGraw, J.I., Colwell, W.T., Brown, V.H., Sato, M., Kisliuk, R.L., Gaumont, Y., Thorndike, J., Sirotnak, F.M. J. Med. Chem. (1988) [Pubmed]
  11. Kinetics of the oxidation of triphenylphosphine by nitric oxide. Lim, M.D., Lorkovic, I.M., Ford, P.C. Inorganic chemistry. (2002) [Pubmed]
  12. Hexaruthenium carbonyl cluster complexes with basal edge-bridged square pyramidal metallic skeleton: efficient synthesis of 2-imidopyridine derivatives and determination of their reactive sites in carbonyl substitution reactions. Cabeza, J.A., del Río, I., García-Alvarez, P., Miguel, D., Riera, V. Inorganic chemistry. (2004) [Pubmed]
  13. Stoichiometric and catalytic oxygen activation by trimesityliridium(III). Jacobi, B.G., Laitar, D.S., Pu, L., Wargocki, M.F., DiPasquale, A.G., Fortner, K.C., Schuck, S.M., Brown, S.N. Inorganic chemistry. (2002) [Pubmed]
  14. Modification of ATP regulatory function in sarcoplasmic reticulum Ca2(+)-ATPase by hydrophobic molecules. Wolosker, H., Petretski, J.H., De Meis, L. Eur. J. Biochem. (1990) [Pubmed]
  15. Mechanism of lipid peroxidation in cancer cells in response to gamma-linolenic acid (GLA) analyzed by GC-MS(I): Conjugated dienes with peroxyl (or hydroperoxyl) groups and cell-killing effects. Takeda, S., Sim, P.G., Horrobin, D.F., Sanford, T., Chisholm, K.A., Simmons, V. Anticancer Res. (1993) [Pubmed]
  16. Computational study of sulfur atom-transfer reactions from thiiranes to ER3 (E = As, P; R = CH3, Ph). Ibdah, A., Espenson, J.H., Jenks, W.S. Inorganic chemistry. (2005) [Pubmed]
  17. Fluorescent image analysis of lipid hydroperoxides in fish muscle with 3-perylene diphenylphosphine. Chotimarkorn, C., Ohshima, T., Ushio, H. Lipids (2006) [Pubmed]
  18. Laser photolysis studies of the reaction of chromium(III) octaethylporphyrin complex with triphenylphosphine and triphenylphosphine oxide. Inamo, M., Matsubara, N., Nakajima, K., Iwayama, T.S., Okimi, H., Hoshino, M. Inorganic chemistry. (2005) [Pubmed]
  19. Excited-state properties of Rh(2)(O(2)CCH(3))(4)(L)(2) (L = CH(3)OH, THF, PPh(3), py). Bradley, P.M., Bursten, B.E., Turro, C. Inorganic chemistry. (2001) [Pubmed]
  20. Bis(carbamoyloxymethyl) esters of 2',3'-dideoxyuridine 5'-monophosphate (ddUMP) as potential ddUMP prodrugs. Khan, S.R., Kumar, S.K., Farquhar, D. Pharm. Res. (2005) [Pubmed]
  21. Crystal structures and vibrational and solution and solid-state (CPMAS) NMR spectroscopic studies in triphenyl phosphine, arsine, and stibine silver(I) bromate systems, (R3E)xAgBrO3 (E = P, As, Sb; x = 1-4). Cingolani, A., Effendy, E., Hanna, J.V., Pellei, M., Pettinari, C., Santini, C., Skelton, B.W., White, A.H. Inorganic chemistry. (2003) [Pubmed]
  22. Measurement of plasma hydroperoxide concentration by FOX-1 assay in conjunction with triphenylphosphine. Banerjee, D., Madhusoodanan, U.K., Sharanabasappa, M., Ghosh, S., Jacob, J. Clin. Chim. Acta (2003) [Pubmed]
  23. Syntheses of amphiphilic glycosylamides from glycosyl azides without transient reduction to glycosylamines. Boullanger, P., Maunier, V., Lafont, D. Carbohydr. Res. (2000) [Pubmed]
  24. Stable glucopyranosylpalladium complexes with cis-beta-hydrogen. A six-membered ring metallocycle with an oxygen donor ligand. Hacksell, U., Kalinkoski, H.T., Barofsky, D.F., Daves, G.D. Acta Chem. Scand., B, Org. Chem. Biochem. (1985) [Pubmed]
  25. The use of polymer-bound triphenylphosphine in the stereochemical inversion of secondary alcohols. White, J.M., Tunoori, A.R., Dutta, D., Georg, G.I. Comb. Chem. High Throughput Screen. (2000) [Pubmed]
  26. Mechanism of the solution oxidation of rofecoxib under alkaline conditions. Harmon, P.A., Biffar, S., Pitzenberger, S.M., Reed, R.A. Pharm. Res. (2005) [Pubmed]
WikiGenes - Universities