The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Effect of protein kinase C modulators on the leucocyte Na+/H+ antiport in type 1 (insulin-dependent) diabetic subjects with albuminuria.

It is uncertain why only one third of Type 1 (insulin-dependent) diabetic patients develop nephropathy. One suggestion is the inheritance of a predisposition to essential hypertension. We have previously found elevated Na+/H+ antiport activity and a raised intracellular pH in leucocytes from hypertensive and Type 1 diabetic subjects with albuminuria using a novel double ionophore fluorimetric technique. These changes are not found in Type 1 diabetic subjects without albuminuria. We wished to test the effect of a protein kinase C inhibitor staurosporine (100 nmol/l) on the elevated antiport activity, and the degree of stimulation achieved by exogenous diacyl glycerol. Raised leucocyte Na+/H+ antiport activity of Type 1 diabetic subjects with albuminuria (73.8 +/- 17.2 mmol.l-1.min-1) was restored to normal levels with staurosporine (54.9 +/- 17.9 mmol.l-1.min-1, p less than 0.001). The leucocyte Na+/H+ antiport activity of diabetic subjects without albuminuria fell significantly also with staurosporine but to a lesser extent (57.3 +/- 11.6 to 50.0 +/- 12.8 mmol/l, p less than 0.003). In contrast, leucocytes from normal control subjects showed no change in antiport activity with staurosporine (54.3 +/- 8.5 to 52.6 +/- 10.4 mmol.l-1.min-1). Dioctanoyl glycerol stimulated the leucocyte Na+/H+ antiport in normal subjects and diabetic patients without albuminuria, with significantly less stimulation in diabetic patients with albuminuria. We conclude that reversal by staurosporine of the elevated Na+/H+ antiport activity in Type 1 diabetic subjects with albuminuria could indicate a role for protein kinase C in activating the antiport. This hypothesis is supported by the reduced stimulation of the antiport by dioctanoyl glycerol in this group of patients.[1]


WikiGenes - Universities