The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Related domains in yeast tRNA ligase, bacteriophage T4 polynucleotide kinase and RNA ligase, and mammalian myelin 2',3'-cyclic nucleotide phosphohydrolase revealed by amino acid sequence comparison.

Related domains containing the purine NTP-binding sequence pattern have been revealed in two enzymes involved in tRNA processing, yeast tRNA ligase and phage T4 polynucleotide kinase, and in one of the major proteins of mammalian nerve myelin sheath, 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNPase). It is suggested that, similarly to the tRNA processing enzymes, CNPase possesses polynucleotide kinase activity, in addition to the phosphohydrolase one. It is speculated that CNPase may be an authentic mammalian polynucleotide kinase recruited as a structural component of the myelin sheath, analogously to the eye lens crystallins. Significant sequence similarity was revealed also between the N-terminal regions of yeast tRNA ligase and phage T4 RNA ligase. A tentative scheme of the domainal organizations for the three complex enzymes is proposed. According to this model, tRNA ligase contains at least three functional domains, in the order: N-ligase-kinase-phosphohydrolase-C, whereas polynucleotide kinase and CNPase encompass only the two C-terminal domains in the same order.[1]

References

 
WikiGenes - Universities