The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Effect of a light-induced pH gradient on purple-to-blue and purple-to-red transitions of bacteriorhodopsin.

Bacteriorhodopsin-containing vesicles that were able to alkalize the extravesicular medium by greater than 1.5 pH units under illumination, i.e., inside-out vesicles, were reconstituted by reverse-phase evaporation with Halobacterium halobium polar lipids or exogenous phospholipids. Acid titration of a dark-adapted sample was accompanied by a color change from purple to blue (pKa = 2.5-4.5 in 0.15 M K2SO4), and alkali titration resulted in the formation of a red species absorbing maximally at 480 nm (pKa = 7 to greater than 9), the pKa values and the extents of these color changes being dependent on the nature of lipid. When a vesicle suspension at neutral or weakly acidic pH was irradiated by continuous light so that a large pH gradient was generated across the membrane, either a purple-to-blue or a purple-to-red transition took place. The light-induced purple-to-red transition was significant in an unbuffered vesicle suspension and correlated with the pH change in the extravesicular medium. The result suggests that the purple-to-red transition is driven from the extravesicular side, i.e., from the C-terminal membrane surface. In the presence of buffer molecules outside, the dominant color change induced in the light was the purple-to-blue transition, which seemed to be due to a large decrease in the intravesicular pH. But an apparently inconsistent result was obtained when the extravesicular medium was acidified by a HCl pulse, which was accompanied by a rapid color change to blue. We arrived at the following explanation: The two bR isomers, one containing all-trans-retinal and the other 13-cis-retinal, respond differently to pH changes in the extravesicular and the intravesicular medium. In this relation, full light adaptation was not achieved when the light-induced purple-to-blue transition was significant; i.e., only the 13-cis isomer is likely to respond to a pH change at the N-terminal membrane surface.[1]

References

  1. Effect of a light-induced pH gradient on purple-to-blue and purple-to-red transitions of bacteriorhodopsin. Nasuda-Kouyama, A., Fukuda, K., Iio, T., Kouyama, T. Biochemistry (1990) [Pubmed]
 
WikiGenes - Universities