The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

AGN-PC-008VCS     3,7-dimethyl-9-(2,6,6- trimethyl-1...

Synonyms: AG-F-74284, AG-F-98352, AG-G-71573, CHEBI:15035, AC1L1ANT, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of retinal

 

Psychiatry related information on retinal

 

High impact information on retinal

 

Chemical compound and disease context of retinal

 

Biological context of retinal

 

Anatomical context of retinal

 

Associations of retinal with other chemical compounds

 

Gene context of retinal

 

Analytical, diagnostic and therapeutic context of retinal

References

  1. Spontaneous activity of opsin apoprotein is a cause of Leber congenital amaurosis. Woodruff, M.L., Wang, Z., Chung, H.Y., Redmond, T.M., Fain, G.L., Lem, J. Nat. Genet. (2003) [Pubmed]
  2. Structure and function in rhodopsin: kinetic studies of retinal binding to purified opsin mutants in defined phospholipid-detergent mixtures serve as probes of the retinal binding pocket. Reeves, P.J., Hwa, J., Khorana, H.G. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  3. Retinal degeneration associated with RDH12 mutations results from decreased 11-cis retinal synthesis due to disruption of the visual cycle. Thompson, D.A., Janecke, A.R., Lange, J., Feathers, K.L., Hübner, C.A., McHenry, C.L., Stockton, D.W., Rammesmayer, G., Lupski, J.R., Antinolo, G., Ayuso, C., Baiget, M., Gouras, P., Heckenlively, J.R., den Hollander, A., Jacobson, S.G., Lewis, R.A., Sieving, P.A., Wissinger, B., Yzer, S., Zrenner, E., Utermann, G., Gal, A. Hum. Mol. Genet. (2006) [Pubmed]
  4. The retinal G protein-coupled receptor (RGR) enhances isomerohydrolase activity independent of light. Wenzel, A., Oberhauser, V., Pugh, E.N., Lamb, T.D., Grimm, C., Samardzija, M., Fahl, E., Seeliger, M.W., Remé, C.E., von Lintig, J. J. Biol. Chem. (2005) [Pubmed]
  5. Nuclear magnetic resonance studies of 6-fluorotryptophan-substituted rat cellular retinol-binding protein II produced in Escherichia coli. Analysis of the apoprotein and the holoprotein containing bound all-trans-retinol and all-trans-retinal. Li, E., Quian, S.J., Nader, L., Yang, N.C., d'Avignon, A., Sacchettini, J.C., Gordon, J.I. J. Biol. Chem. (1989) [Pubmed]
  6. Disruption of the retinoid signalling pathway causes a deposition of amyloid beta in the adult rat brain. Corcoran, J.P., So, P.L., Maden, M. Eur. J. Neurosci. (2004) [Pubmed]
  7. A palmitoylation switch mechanism in the regulation of the visual cycle. Xue, L., Gollapalli, D.R., Maiti, P., Jahng, W.J., Rando, R.R. Cell (2004) [Pubmed]
  8. A photic visual cycle of rhodopsin regeneration is dependent on Rgr. Chen, P., Hao, W., Rife, L., Wang, X.P., Shen, D., Chen, J., Ogden, T., Van Boemel, G.B., Wu, L., Yang, M., Fong, H.K. Nat. Genet. (2001) [Pubmed]
  9. Mutations in the gene encoding 11-cis retinol dehydrogenase cause delayed dark adaptation and fundus albipunctatus. Yamamoto, H., Simon, A., Eriksson, U., Harris, E., Berson, E.L., Dryja, T.P. Nat. Genet. (1999) [Pubmed]
  10. Genetic evidence that retinaldehyde dehydrogenase Raldh1 (Aldh1a1) functions downstream of alcohol dehydrogenase Adh1 in metabolism of retinol to retinoic acid. Molotkov, A., Duester, G. J. Biol. Chem. (2003) [Pubmed]
  11. Unoccluded retinol penetrates human skin in vivo more effectively than unoccluded retinyl palmitate or retinoic acid. Duell, E.A., Kang, S., Voorhees, J.J. J. Invest. Dermatol. (1997) [Pubmed]
  12. Rapid changes in the expression of glial cell proteins caused by experimental retinal detachment. Lewis, G.P., Guérin, C.J., Anderson, D.H., Matsumoto, B., Fisher, S.K. Am. J. Ophthalmol. (1994) [Pubmed]
  13. Retinaldehyde alleviates rosacea. Vienne, M.P., Ochando, N., Borrel, M.T., Gall, Y., Lauze, C., Dupuy, P. Dermatology (Basel) (1999) [Pubmed]
  14. Efficacy and safety of 0.1% retinaldehyde/ 6% glycolic acid (diacneal) for mild to moderate acne vulgaris. A multicentre, double-blind, randomized, vehicle-controlled trial. Poli, F., Ribet, V., Lauze, C., Adhoute, H., Morinet, P. Dermatology (Basel) (2005) [Pubmed]
  15. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Redmond, T.M., Yu, S., Lee, E., Bok, D., Hamasaki, D., Chen, N., Goletz, P., Ma, J.X., Crouch, R.K., Pfeifer, K. Nat. Genet. (1998) [Pubmed]
  16. Pinopsin is a chicken pineal photoreceptive molecule. Okano, T., Yoshizawa, T., Fukada, Y. Nature (1994) [Pubmed]
  17. Role of noncovalent binding of 11-cis-retinal to opsin in dark adaptation of rod and cone photoreceptors. Kefalov, V.J., Crouch, R.K., Cornwall, M.C. Neuron (2001) [Pubmed]
  18. Multiple phosphorylation of rhodopsin and the in vivo chemistry underlying rod photoreceptor dark adaptation. Kennedy, M.J., Lee, K.A., Niemi, G.A., Craven, K.B., Garwin, G.G., Saari, J.C., Hurley, J.B. Neuron (2001) [Pubmed]
  19. Development of the light response in neonatal mammalian rods. Ratto, G.M., Robinson, D.W., Yan, B., McNaughton, P.A. Nature (1991) [Pubmed]
  20. Like night and day: rods and cones have different pigment regeneration pathways. Arshavsky, V. Neuron (2002) [Pubmed]
  21. Noninvasive two-photon imaging reveals retinyl ester storage structures in the eye. Imanishi, Y., Batten, M.L., Piston, D.W., Baehr, W., Palczewski, K. J. Cell Biol. (2004) [Pubmed]
  22. Cell surface dynamics of neutrophils stimulated with phorbol esters or retinoids. Robinson, J.M., Badwey, J.A., Karnovsky, M.L., Karnovsky, M.J. J. Cell Biol. (1987) [Pubmed]
  23. G protein-coupled receptor rhodopsin: a prospectus. Filipek, S., Stenkamp, R.E., Teller, D.C., Palczewski, K. Annu. Rev. Physiol. (2003) [Pubmed]
  24. Retinoic acid is necessary for development of the ventral retina in zebrafish. Marsh-Armstrong, N., McCaffery, P., Gilbert, W., Dowling, J.E., Dräger, U.C. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  25. Mediation of retinal photoisomerization by adduct formation with tris(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionato)-europium(II). Ellis, A.B., Schreiner, R., Ulkus, R.A. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  26. Visual cycle impairment in cellular retinaldehyde binding protein (CRALBP) knockout mice results in delayed dark adaptation. Saari, J.C., Nawrot, M., Kennedy, B.N., Garwin, G.G., Hurley, J.B., Huang, J., Possin, D.E., Crabb, J.W. Neuron (2001) [Pubmed]
  27. Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Redmond, T.M., Poliakov, E., Yu, S., Tsai, J.Y., Lu, Z., Gentleman, S. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  28. Null mutation in the rhodopsin kinase gene slows recovery kinetics of rod and cone phototransduction in man. Cideciyan, A.V., Zhao, X., Nielsen, L., Khani, S.C., Jacobson, S.G., Palczewski, K. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  29. Targeted disruption of the murine retinal dehydrogenase gene rdh12 does not limit visual cycle function. Kurth, I., Thompson, D.A., Rüther, K., Feathers, K.L., Chrispell, J.D., Schroth, J., McHenry, C.L., Schweizer, M., Skosyrski, S., Gal, A., Hübner, C.A. Mol. Cell. Biol. (2007) [Pubmed]
  30. Retinoic acid-dependent eye morphogenesis is orchestrated by neural crest cells. Matt, N., Dupé, V., Garnier, J.M., Dennefeld, C., Chambon, P., Mark, M., Ghyselinck, N.B. Development (2005) [Pubmed]
  31. A bacteriorhodopsin analog reconstituted with a nonisomerizable 13-trans retinal derivative displays light insensitivity. Bhattacharya, S., Marti, T., Otto, H., Heyn, M.P., Khorana, H.G. J. Biol. Chem. (1992) [Pubmed]
  32. 11-cis-retinal reduces constitutive opsin phosphorylation and improves quantum catch in retinoid-deficient mouse rod photoreceptors. Ablonczy, Z., Crouch, R.K., Goletz, P.W., Redmond, T.M., Knapp, D.R., Ma, J.X., Rohrer, B. J. Biol. Chem. (2002) [Pubmed]
  33. Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. Liang, Y., Fotiadis, D., Filipek, S., Saperstein, D.A., Palczewski, K., Engel, A. J. Biol. Chem. (2003) [Pubmed]
  34. Demonstration of a sensory rhodopsin in eubacteria. Jung, K.H., Trivedi, V.D., Spudich, J.L. Mol. Microbiol. (2003) [Pubmed]
  35. The relationship between opsin overexpression and photoreceptor degeneration. Tan, E., Wang, Q., Quiambao, A.B., Xu, X., Qtaishat, N.M., Peachey, N.S., Lem, J., Fliesler, S.J., Pepperberg, D.R., Naash, M.I., Al-Ubaidi, M.R. Invest. Ophthalmol. Vis. Sci. (2001) [Pubmed]
 
WikiGenes - Universities