The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Adaptation, Ocular

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Adaptation, Ocular

  • Sensitivity-modulating protein (S-modulin) is a Ca(2+)-binding protein involved in light adaptation in frog rods; it regulates both the light sensitivity of PDE and the lifetime of activated PDE by controlling rhodopsin phosphorylation in a Ca(2+)-dependent manner [1].
  • Since dopamine is especially involved in light adaptation from darkness, the residual retina could act in triggering the turning behavior of Proteus in response to lightening [2].
  • Furthermore, Na+ channel modulation is implicated in the control of input-output relationships in several types of neuron and seems to be involved in phenomena as varied as cocaine withdrawal, hyperalgesia and light adaptation [3].
 

Psychiatry related information on Adaptation, Ocular

 

High impact information on Adaptation, Ocular

  • The intensity dependence of the photoresponse in rods lacking arrestin further suggests that, although arrestin is required for normal signal termination, it does not participate directly in light adaptation [5].
  • We now show that under physiological conditions light adaptation is severely reduced in inaC, suggesting that eye-specific PKC, itself activated by a rise in cytosolic calcium and diacylglycerol, is required for adaptation [6].
  • On the basis of these studies, Ca2+ is suggested to play a central role in photorecovery and light adaptation, not only by regulating guanylate cyclase, possibly through recoverin, but also by modulating the cGMP-gated channel through calmodulin interaction with the 240K protein [7].
  • This is believed to be one of the mechanisms of light-adaptation produced by activation of guanylate cyclase [8].
  • Similarly, 'light adaptation' involves decreased coupling of photoactivated rhodopsin to cGMP phosphodiesterase activation [9].
 

Biological context of Adaptation, Ocular

 

Anatomical context of Adaptation, Ocular

 

Associations of Adaptation, Ocular with chemical compounds

 

Gene context of Adaptation, Ocular

  • These findings indicate that light-dependent trafficking of arrestin is regulated by direct interaction with PIs and is required for light adaptation [24].
  • Localization of heme oxygenase in rat retina: effect of light adaptation [25].
  • A key component in dark/light adaptation is phosducin, a phosphorylatable protein that modulates the amount of transducin heterotrimer (Gt alpha beta gamma) available through sequestration of the beta gamma subunits (Gt beta gamma) [26].
  • In this system, we investigate the hitherto unknown physiological roles of calmodulin (CaM) in light adaptation and in regulation of the inward current that is brought about by depletion of cellular Ca2+ stores [15].
  • The results indicate that light adaptation is primarily mediated downstream of PLC and independently of PKC by Ca(2+)-dependent inhibition of TRP channels [27].
 

Analytical, diagnostic and therapeutic context of Adaptation, Ocular

References

  1. Recoverin has S-modulin activity in frog rods. Kawamura, S., Hisatomi, O., Kayada, S., Tokunaga, F., Kuo, C.H. J. Biol. Chem. (1993) [Pubmed]
  2. Persistence of retinal dopamine cells in the degenerated eye of the cave salamander, Proteus anguinus L. Nguyen-Legros, J., Durand, J., Simon, A., Keller, N., Vigny, A., Dupuy, J., Pouliquen, Y. Ophthalmic Res. (1987) [Pubmed]
  3. Neuromodulation of Na+ channels: an unexpected form of cellular plasticity. Cantrell, A.R., Catterall, W.A. Nat. Rev. Neurosci. (2001) [Pubmed]
  4. Ryanodine receptor modulation of in vitro associative learning in Hermissenda crassicornis. Blackwell, K.T., Alkon, D.L. Brain Res. (1999) [Pubmed]
  5. Prolonged photoresponses in transgenic mouse rods lacking arrestin. Xu, J., Dodd, R.L., Makino, C.L., Simon, M.I., Baylor, D.A., Chen, J. Nature (1997) [Pubmed]
  6. Protein kinase C is required for light adaptation in Drosophila photoreceptors. Hardie, R.C., Peretz, A., Suss-Toby, E., Rom-Glas, A., Bishop, S.A., Selinger, Z., Minke, B. Nature (1993) [Pubmed]
  7. Modulation of the cGMP-gated channel of rod photoreceptor cells by calmodulin. Hsu, Y.T., Molday, R.S. Nature (1993) [Pubmed]
  8. Calcium-dependent regulation of cyclic GMP phosphodiesterase by a protein from frog retinal rods. Kawamura, S., Murakami, M. Nature (1991) [Pubmed]
  9. Light-dependent phosphorylation of rhodopsin by beta-adrenergic receptor kinase. Benovic, J.L., Mayor, F., Somers, R.L., Caron, M.G., Lefkowitz, R.J. Nature (1986) [Pubmed]
  10. Phosphorylation of non-bleached rhodopsin in intact retinas and living frogs. Binder, B.M., O'Connor, T.M., Bownds, M.D., Arshavsky, V.Y. J. Biol. Chem. (1996) [Pubmed]
  11. Nonvisual arrestin oligomerization and cellular localization are regulated by inositol hexakisphosphate binding. Milano, S.K., Kim, Y.M., Stefano, F.P., Benovic, J.L., Brenner, C. J. Biol. Chem. (2006) [Pubmed]
  12. Role of intracellular calcium and sodium in light adaptation in the retina of the honey bee drone (Apis mellifera, L). Bader, C., Baumann, F., Bertrand, D. J. Gen. Physiol. (1976) [Pubmed]
  13. The actions of gamma-aminobutyric acid, glycine and their antagonists upon horizontal cells of the Xenopus retina. Stone, S., Witkovsky, P. J. Physiol. (Lond.) (1984) [Pubmed]
  14. Interaction of light and chlorobutanol on Limulus ventral photoreceptor potential latency. Wulff, V.J., Fahy, J.L. Brain Res. Bull. (1980) [Pubmed]
  15. Calmodulin regulation of light adaptation and store-operated dark current in Drosophila photoreceptors. Arnon, A., Cook, B., Gillo, B., Montell, C., Selinger, Z., Minke, B. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  16. Effect of protein-protein interaction on light adaptation of bacteriorhodopsin. Casadio, R., Stoeckenius, W. Biochemistry (1980) [Pubmed]
  17. NADPH diaphorase activity in mammalian retinas is modulated by the state of visual adaptation. Zemel, E., Eyal, O., Lei, B., Perlman, I. Vis. Neurosci. (1996) [Pubmed]
  18. Effects of melatonin and light on porphyrin synthesis in the bovine retina, pigment epithelium and choroid. Durkó, I., Joó, I., Juhász, A. Biochim. Biophys. Acta (1992) [Pubmed]
  19. State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Bellafiore, S., Barneche, F., Peltier, G., Rochaix, J.D. Nature (2005) [Pubmed]
  20. Interphotoreceptor retinol-binding proteins: possible transport vehicles between compartments of the retina. Lai, Y.L., Wiggert, B., Liu, Y.P., Chader, G.J. Nature (1982) [Pubmed]
  21. Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Hardie, R.C., Minke, B. Trends Neurosci. (1993) [Pubmed]
  22. Retinal dopamine and form-deprivation myopia. Stone, R.A., Lin, T., Laties, A.M., Iuvone, P.M. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  23. Retinoic acid has light-adaptive effects on horizontal cells in the retina. Weiler, R., Schultz, K., Pottek, M., Tieding, S., Janssen-Bienhold, U. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  24. Light adaptation through phosphoinositide-regulated translocation of Drosophila visual arrestin. Lee, S.J., Xu, H., Kang, L.W., Amzel, L.M., Montell, C. Neuron (2003) [Pubmed]
  25. Localization of heme oxygenase in rat retina: effect of light adaptation. Nishimura, R.N., Dwyer, B.E., Lu, S.Y. Neurosci. Lett. (1996) [Pubmed]
  26. A molecular mechanism for the phosphorylation-dependent regulation of heterotrimeric G proteins by phosducin. Gaudet, R., Savage, J.R., McLaughlin, J.N., Willardson, B.M., Sigler, P.B. Mol. Cell (1999) [Pubmed]
  27. Mechanisms of light adaptation in Drosophila photoreceptors. Gu, Y., Oberwinkler, J., Postma, M., Hardie, R.C. Curr. Biol. (2005) [Pubmed]
  28. Effect of glutamate analogues on red-green opponent interaction in monkey electroretinograms. Kasuga, T. Exp. Eye Res. (2001) [Pubmed]
  29. Investigation of light-induced conformation changes in spiropyran-modified succinylated poly(L-lysine). Cooper, T.M., Stone, M.O., Natarajan, L.V., Crane, R.L. Photochem. Photobiol. (1995) [Pubmed]
  30. Melatonin decreases the amplitude of the b-wave of the human electroretinogram. Emser, W., Dechoux, R., Weiland, M., Wirz-Justice, A. Experientia (1993) [Pubmed]
  31. Localization of S-antigen under various conditions of light or dark adaptation in the rabbit. Yajima, S., Hasemi, M., Usui, M. Jpn. J. Ophthalmol. (1985) [Pubmed]
 
WikiGenes - Universities