The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Photoperiod affects reproductive responsiveness to 6-methoxy-2-benzoxazolinone in house mice.

House mice (Mus musculus) have traditionally been characterized as nonphotoperiodic because reproductive function is unaffected by day length in the laboratory. In the present study, the reproductive responsiveness of CF1 mice to a naturally occurring plant metabolite was assessed in animals that were maintained in either long (16L:8D) or short (8L:16D) photoperiods from birth until the end of the study. Males and females were implanted i.p. with either an empty Silastic capsule or one containing 6-methoxy-2-benzoxazolinone (6-MBOA) at either 21 or 60 days of age for 3 days. Other 31-day-old mice were implanted with capsules for 8 wk. Three-day exposure to 6-MBOA stimulated uterine growth in short-day, adult females, but did not affect adult females housed in long photoperiods. Short-term treatment with 6-MBOA did not significantly affect reproductive parameters in either long- or short-day peripubertal house mice, or in adult males regardless of photoperiod, nor did exposure to 6-MBOA for 8 wk influence reproduction in males in either photoperiodic condition. However, short-day female mice had significantly reduced ovarian and uterine masses after 8 wk chronic 6-MBOA treatment as compared to long-day animals or mice unexposed to 6-MBOA. Short-day females exposed to 6-MBOA for 8 wk developed a denser pelage compared to long-day mice treated with this compound. Photoperiod-mediated differential responsiveness to 6-MBOA indicates that female house mice can discriminate long from short days, and these results suggest that the physiological mechanisms for photoperiodic responsiveness remain extant in this species previously characterized as nonphotperiodic.[1]

References

 
WikiGenes - Universities