The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Interaction of lipoprotein lipase with glycosaminoglycans and apolipoprotein C-II: effects of free-fatty-acids.

Lipoprotein lipase (LPL) bound to endothelial cells is released from the cell surface by triacylglycerol-rich lipoproteins and oleic acid (Saxena, U., Witte, L.D. and Goldberg, I.J. (1989) J. Biol. Chem. 264, 4349-4355). Studies were conducted to compare the ability of different fatty acids to release 125I-labelled bovine milk LPL bound to endothelial cells and to define the mechanism for this effect. Using fatty acid/bovine serum albumin ( BSA) solutions (molar ratio, 6:1), the release of LPL from endothelial cell surfaces using monounsaturated (18:1), polyunsaturated (18:2) and saturated (16:0) fatty acids was 78%, 60% and 28%, respectively. Release of LPL from heparin-agarose followed a similar pattern, suggesting that the fatty acids specifically affected LPL-heparin interaction. Short-chain fatty acids (C6, C8 and C10), medium-chain fatty acids (C12 and C14) and elaidic acid, a transisomer of oleic acid, released less 125I-LPL than oleic acid from heparin-agarose. To determine whether oleic acid release of 125I-LPL from heparin-agarose was due to binding of the fatty acid to heparin or LPL, oleic acid was incubated with either LPL or heparin-agarose prior to performing the affinity chromatography. Only the prior incubation with LPL affected the binding to heparin-agarose. This demonstrates that dissociation of LPL from heparin required interaction of fatty acid with LPL. At high molar ratios of fatty acid:BSA (greater than 3:1), apo C-II is known to be ineffective as an activator of LPL. To determine whether this effect is due to decreased association of apo C-II with LPL, 125I-apo C-II (0.5-10 nmol) was allowed to bind to LPL-Sepharose. A 6:1 molar ratio of oleic acid:BSA produced up to 69% decrease in the amount of 125I-apo C-II bound to the gel. This dissociation of apo C-II from LPL by oleic acid was also demonstrated using gel-filtration chromatography. Thus, the amount and type of fatty acids may be important in regulating LPL activity in vivo by affecting both LPL interaction with glycosaminoglycans and with apo C-II.[1]

References

 
WikiGenes - Universities