The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Further studies on the subunit structure of Chromatium ribulose-1,5-phosphate carboxylase.

Upon alkali exposure Chromatium ribulose-1,5-bisphosphate carboxylase dissociates into constituent subunits, a catalytic oligomer of the larger subunit, A8, and monomeric form of the small subunit B. By sedimentation equilibrium molecular weights of the native enzyme and the catalytic oligomer produced by an alkali treatment were estimated to be 5.11 x 10 5 and 4.29 x 10 5, respectively. To provide information on reversibility of the dissociation by determining whether the enzymically inactive small subunit B of the whole enzyme molecule did indeed exchange with exogenously added subunit B a radioisotopic method was used. After initial alkaline dialysis at pH 9.2 of a mixture of a nonlabeled native enzyme preparation and 14C-labeled subunit B, and the subsequent dialysis at pH 7.0, incorporation of 14C into the recovered native enzyme was determined. Without the alkaline treatment there was no detectable exchange, while after alkaline dialysis for 5 and 10 hr the subunit B exchange was 89 and 82%, respectively. Rabbit antiserum prepared against the catalytic oligomer of the spinach ribulose-1,5-bisphosphate carboxylase, anti-(A) (spinach), inhibited the Chromatium carboxylase and oxygenase activities. This result together with the identical immunoprecipitation lines on an agar plate formed between the antiserum and the Chromatium carboxylase and between the antiserum and the catalytic subunit of the Chromatium enzyme strongly indicated structural near identity of the catalytic subunits of the spinach and Chromatium carboxylase molecules. Results also show that the catalytic site of the Chromatium ribulose-1,5-bisphosphate carboxylase and oxygenase exists in the large polypeptide chain.[1]

References

 
WikiGenes - Universities