The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Chromatium

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Chromatium

 

High impact information on Chromatium

  • The structure of the heterodimeric flavocytochrome c sulfide dehydrogenase from Chromatium vinosum was determined at a resolution of 2.53 angstroms [6].
  • Role of aromatic residues in stabilization of the [Fe4S4] cluster in high-potential iron proteins (HiPIPs): physical characterization and stability studies of Tyr-19 mutants of Chromatium vinosum HiPIP [7].
  • Dependence of the rates of dissolution of the Fe4S4 clusters of Chromatium vinosum high-potential iron protein and ferredoxin on cluster oxidation state [8].
  • The gene (garB) encoding the central enzyme in glutathione amide cycling, glutathione amide reductase (GAR), has been isolated from Chromatium gracile, and its genomic organization has been examined [9].
  • Infrared-spectroscopic studies on the [NiFe]-hydrogenase of Chromatium vinosum-enriched in 15N or 13C, as well as chemical analyses, show that this enzyme contains three non-exchangeable, intrinsic, diatomic molecules as ligands to the active site, one carbon monoxide molecule and two cyanide groups [10].
 

Chemical compound and disease context of Chromatium

  • We have recently described the existence of two sets of genes encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rbu-P2 carboxylase), rbcA-rbcB and rbcL-rbcS, in the photosynthetic purple sulfur bacterium Chromatium vinosum (Viale, A.M., Kobayashi, H., and Akazawa, T. (1989) J. Bacteriol. 171, 2391-2400) [11].
  • The N-terminal sequence of the Chromatium FC flavin subunit was determined up to residue 41 as AGRKVVVVGGGTGGATAAKYIKLADPSIEVTLIEP NTKYYT [12].
  • Resonance Raman and electron paramagnetic resonance spectroscopy have been utilized to identify histidine as an axial heme ligand in a high spin, heme c-containing protein isolated from the photosynthetic purple sulfur bacterium Chromatium vinosum [13].
  • NH2-terminal sequencing of the first 56 amino acid residues shows that FdIII is a chromatium-type ferredoxin with 77% identity and 88% similarity to Chromatium vinosum ferredoxin [14].
  • Adenosine-5'-phosphosulfate reductase thought to function in the 'reverse' direction in different phototrophic and chemotrophic sulfur-oxidizing bacteria was analysed in Chromatium vinosum [15].
 

Biological context of Chromatium

 

Anatomical context of Chromatium

 

Gene context of Chromatium

  • The T. ferrooxidans trxA gene was sequenced and the thioredoxin was found to be most like that of E. coli (71% identity) and Chromatium vinosum (70% identity) [22].
  • The gene for cytochrome c' from Chromatium vinosum was cloned from a HindIII-SalI digest of genomic DNA [23].
  • Evidence for a thioether linkage between the flavin and polypeptide chain of Chromatium cytochrome c 552 [24].
  • Two chimeric proteins were constructed by fusing the gene encoding a ferredoxin from Chromatium vinosum to genes encoding the 49 and 82 kDa fragments of the alpha subunit [25].
  • 1H NMR studies of oxidized high-potential iron protein from Chromatium vinosum. Nuclear Overhauser effect measurements [26].
 

Analytical, diagnostic and therapeutic context of Chromatium

References

  1. The primary structure of thioredoxin from Chromatium vinosum determined by high-performance tandem mass spectrometry. Johnson, R.S., Biemann, K. Biochemistry (1987) [Pubmed]
  2. Calculation of the redox potentials of iron-sulfur proteins: the 2-/3-couple of [Fe4S*4Cys4] clusters in Peptococcus aerogenes ferredoxin, Azotobacter vinelandii ferredoxin I, and Chromatium vinosum high-potential iron protein. Jensen, G.M., Warshel, A., Stephens, P.J. Biochemistry (1994) [Pubmed]
  3. Cloning, characterization, and functional expression in Escherichia coli of chaperonin (groESL) genes from the phototrophic sulfur bacterium Chromatium vinosum. Ferreyra, R.G., Soncini, F.C., Viale, A.M. J. Bacteriol. (1993) [Pubmed]
  4. Isolation and characterization of sulfur globule proteins from Chromatium vinosum and Thiocapsa roseopersicina. Brune, D.C. Arch. Microbiol. (1995) [Pubmed]
  5. Heterologous hybridization of ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) restores the enzyme activities. Incharoensakdi, A., Takabe, T., Takabe, T., Akazawa, T. Biochem. Biophys. Res. Commun. (1985) [Pubmed]
  6. The structure of flavocytochrome c sulfide dehydrogenase from a purple phototrophic bacterium. Chen, Z.W., Koh, M., Van Driessche, G., Van Beeumen, J.J., Bartsch, R.G., Meyer, T.E., Cusanovich, M.A., Mathews, F.S. Science (1994) [Pubmed]
  7. Role of aromatic residues in stabilization of the [Fe4S4] cluster in high-potential iron proteins (HiPIPs): physical characterization and stability studies of Tyr-19 mutants of Chromatium vinosum HiPIP. Agarwal, A., Li, D., Cowan, J.A. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  8. Dependence of the rates of dissolution of the Fe4S4 clusters of Chromatium vinosum high-potential iron protein and ferredoxin on cluster oxidation state. Maskiewicz, R., Bruice, T.C. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  9. Characterization of clutathione amide reductase from Chromatium gracile. Identification of a novel thiol peroxidase (Prx/Grx) fueled by glutathione amide redox cycling. Vergauwen, B., Pauwels, F., Jacquemotte, F., Meyer, T.E., Cusanovich, M.A., Bartsch, R.G., Van Beeumen, J.J. J. Biol. Chem. (2001) [Pubmed]
  10. Carbon monoxide and cyanide as intrinsic ligands to iron in the active site of [NiFe]-hydrogenases. NiFe(CN)2CO, Biology's way to activate H2. Pierik, A.J., Roseboom, W., Happe, R.P., Bagley, K.A., Albracht, S.P. J. Biol. Chem. (1999) [Pubmed]
  11. Distinct properties of Escherichia coli products of plant-type ribulose-1,5-bisphosphate carboxylase/oxygenase directed by two sets of genes from the photosynthetic bacterium Chromatium vinosum. Viale, A.M., Kobayashi, H., Akazawa, T. J. Biol. Chem. (1990) [Pubmed]
  12. Covalent structure of the diheme cytochrome subunit and amino-terminal sequence of the flavoprotein subunit of flavocytochrome c from Chromatium vinosum. Van Beeumen, J.J., Demol, H., Samyn, B., Bartsch, R.G., Meyer, T.E., Dolata, M.M., Cusanovich, M.A. J. Biol. Chem. (1991) [Pubmed]
  13. Spectroscopic and kinetic properties of an oxygen-binding heme protein from Chromatium vinosum. Gaul, D.F., Ondrias, M.R., Findsen, E.W., Palmer, G., Olson, J.S., Davidson, M.W., Knaff, D.B. J. Biol. Chem. (1987) [Pubmed]
  14. Discovery of a novel ferredoxin from Azotobacter vinelandii containing two [4Fe-4S] clusters with widely differing and very negative reduction potentials. Gao-Sheridan, H.S., Pershad, H.R., Armstrong, F.A., Burgess, B.K. J. Biol. Chem. (1998) [Pubmed]
  15. Physiology and genetics of sulfur-oxidizing bacteria. Friedrich, C.G. Adv. Microb. Physiol. (1998) [Pubmed]
  16. Further studies on the subunit structure of Chromatium ribulose-1,5-phosphate carboxylase. Takabe, T., Akazawa, T. Biochemistry (1975) [Pubmed]
  17. Isolation and characterization of soluble electron transfer proteins from Chromatium purpuratum. Kerfeld, C.A., Chan, C., Hirasawa, M., Kleis-SanFrancisco, S., Yeates, T.O., Knaff, D.B. Biochemistry (1996) [Pubmed]
  18. Characterization of an autoreduction pathway for the [Fe4S4]3+ cluster of mutant Chromatium vinosum high-potential iron proteins. Site-directed mutagenesis studies to probe the role of phenylalanine 66 in defining the stability of the [Fe4S4] center provide evidence for oxidative degradation via a [Fe3S4] cluster. Bian, S., Hemann, C.F., Hille, R., Cowan, J.A. Biochemistry (1996) [Pubmed]
  19. Kinetics of cyanide binding to Chromatium vinosum ferricytochrome c'. Motie, M., Kassner, R.J., Meyer, T.E., Cusanovich, M.A. Biochemistry (1990) [Pubmed]
  20. rbcR [correction of rcbR], a gene coding for a member of the LysR family of transcriptional regulators, is located upstream of the expressed set of ribulose 1,5-bisphosphate carboxylase/oxygenase genes in the photosynthetic bacterium Chromatium vinosum. Viale, A.M., Kobayashi, H., Akazawa, T., Henikoff, S. J. Bacteriol. (1991) [Pubmed]
  21. Enzymic formation of glycolate in Chromatium. Role of superoxide radical in a transketolase-type mechanism. Asami, S., Akazawa, T. Biochemistry (1977) [Pubmed]
  22. Molecular genetic analysis of a thioredoxin gene from Thiobacillus ferrooxidans. Powles, R.E., Deane, S.M., Rawlings, D.E. Microbiology (Reading, Engl.) (1995) [Pubmed]
  23. Molecular cloning and sequencing of cytochrome c' from the phototrophic purple sulfur bacterium Chromatium vinosum. Even, M.T., Kassner, R.J., Dolata, M., Meyer, T.E., Cusanovich, M.A. Biochim. Biophys. Acta (1995) [Pubmed]
  24. Evidence for a thioether linkage between the flavin and polypeptide chain of Chromatium cytochrome c 552. Kenney, W.C., Singer, T.P. J. Biol. Chem. (1977) [Pubmed]
  25. Genetic construction of truncated and chimeric metalloproteins derived from the alpha subunit of acetyl-CoA synthase from Clostridium thermoaceticum. Loke, H.K., Tan, X., Lindahl, P.A. J. Am. Chem. Soc. (2002) [Pubmed]
  26. 1H NMR studies of oxidized high-potential iron protein from Chromatium vinosum. Nuclear Overhauser effect measurements. Cowan, J.A., Sola, M. Biochemistry (1990) [Pubmed]
  27. Crystallization and characterization of Chromatium vinosum cytochrome c'. McRee, D.E., Redford, S.M., Meyer, T.E., Cusanovich, M.A. J. Biol. Chem. (1990) [Pubmed]
  28. Molecular cloning and expression of the gene encoding Chromatium vinosum 2[4Fe-4S] ferredoxin. Moulis, J.M. Biochim. Biophys. Acta (1996) [Pubmed]
 
WikiGenes - Universities