The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Human delta-aminolevulinate synthase: assignment of the housekeeping gene to 3p21 and the erythroid-specific gene to the X chromosome.

delta-Aminolevulinate synthase (ALAS) catalyzes the first committed step of heme biosynthesis. Previous studies suggested that there were erythroid and nonerythroid ALAS isozymes. We have isolated cDNAs encoding the ubiquitously expressed housekeeping ALAS isozyme and a related, but distinct, erythroid-specific isozyme. Using these different cDNAs, the human ALAS housekeeping gene (ALAS1) and the human erythroid-specific (ALAS2) gene have been localized to chromosomes 3p21 and X, respectively, by somatic cell hybrid and in situ hybridization techniques. The ALAS1 gene was concordant with chromosome 3 in all 26 human fibroblast/murine(RAG) somatic cell hybrid clones analyzed and was discordant with all other chromosomes in at least 6 of 26 clones. The regional localization of ALAS1 to 3p21 was accomplished by in situ hybridization using the 125I-labeled human ALAS1 cDNA. Of the 43 grains observed over chromosome 3, 63% were localized to the region 3p21. The gene encoding ALAS2 was assigned by examination of a DNA panel of 30 somatic cell hybrid lines hybridized with the ALAS2 cDNA. The ALAS2 gene segregated with the human X chromosome in all 30 hybrid cell lines analyzed and was discordant with all other chromosomes in at least 8 of the 30 hybrids. These results confirm the existence of two independent, but related, genes encoding human ALAS. Furthermore, the mapping of the ALAS2 gene to the X chromosome and the observed reduction in ALAS activity in X-linked sideroblastic anemia suggest that this disorder may be due to a mutation in the erythroid-specific gene.[1]

References

 
WikiGenes - Universities