The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The rate and structural consequences of proline cis-trans isomerization in calbindin D9k: NMR studies of the minor (cis-Pro43) isoform and the Pro43Gly mutant.

The EF-hand calcium-binding protein, calbindin D9k, exists in solution in the calcium-loaded state, as a 1:3 equilibrium mixture of two isoforms, the result of cis-trans isomerism at the Gly42-Pro43 peptide bond [Chazin et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 2195-2198]. Nuclear magnetic resonance (NMR) studies of the minor (cis-Pro43) isoform and the Pro43----Gly mutant are reported here. The rate of cis----trans isomerization at the Pro43 peptide bond in the wild-type protein was determined by line-shape analysis at elevated temperatures, using a sample in which all amino acids, except Ser and Val, were deuterated. The cis----trans rate is calculated to be 0.2 s-1 at 25 degrees C, corresponding to a free energy of activation, delta G, of 77 kJ/ mol. The complete sequence-specific 1H NMR assignments of the cis-Pro43 isoform and the Pro43----Gly mutant in the calcium-loaded state have been obtained by using standard methods combined with comparisons to the previously assigned major (trans-Pro43) isoform. This has permitted detailed comparative analysis of 1H NMR chemical shifts, backbone scalar coupling constants, and nuclear Overhauser effects. The minor isoform has a global fold that is identical with that of the major isoform. Structural changes imposed by cis-trans isomerization at Pro43 are highly localized to the linker loop (containing Pro43) that joins the two EF hands. The Pro43----Gly mutant has a global fold that is identical with the wild-type protein, but does not exhibit conformational heterogeneity. Only very limited structural differences are observed between mutant and wild-type protein, and these are also highly localized to the linker loop. The ion-binding properties of the mutant, as determined by 43Ca and 113Cd NMR, are found to be very similar to the wild-type protein. These results provide crucial evidence that justifies the calculation of high-resolution three-dimensional structures of the Pro43Gly mutant, rather than of the conformationally heterogeneous wild-type protein.[1]


WikiGenes - Universities