Functional domains and upstream activation properties of cloned human TATA binding protein.
The TATA binding protein, TFIID, plays a central role in the initiation of eukaryotic mRNA synthesis. Here, we present a human cDNA clone for this factor. Comparison of its predicted protein sequence with those from Drosophila and yeast reveals a highly conserved carboxyl-terminal 180 amino acids. By contrast, the amino-terminal region of TFIID has diverged in both sequence and length. A striking feature of the human protein is a stretch of 38 glutamine residues in the NH2-terminal region. Expression of human TFIID in both Escherichia coli and HeLa cells produces a protein that binds specifically to a TATA box and promotes basal transcription; the conserved COOH-terminal portion of the protein is sufficient for both of these activities. Recombinant TFIID forms a stable complex on a TATA box either alone or in combination with either of the general transcription factors, TFIIA or TFIIB. Full-length recombinant TFIID is able to support Sp1 activated transcription in a TFIID-depleted nuclear extract, while a deletion of the NH2-terminal half of the protein is not. These results indicate the importance of the NH2-terminal region for upstream activation functions and suggest that additional factors (co-activators) are required for mediating interactions with specific regulators.[1]References
- Functional domains and upstream activation properties of cloned human TATA binding protein. Peterson, M.G., Tanese, N., Pugh, B.F., Tjian, R. Science (1990) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg