The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of TATA Box

  • The TATA-binding protein (TBP) is required for transcription by RNA polymerase III (pol III), even though many pol III templates, such as the adenovirus VA1 gene, lack a consensus TATA box [1].
  • This leads to the activation of downstream promoter elements (TATA box and initiation, I, region) of three different regulated yeast promoters fused to the E. coli lacZ gene [2].
  • This repression was mediated through binding to the E2 DNA-binding site immediately upstream of the P105 promoter TATA box and could be abrogated by preincubation of the HPV-18 P105 promoter template with the nuclear extract allowing the formation of the preinitiation complex [3].
  • Regulation of tyrosinase gene expression by cAMP in B16 melanoma cells involves two CATGTG motifs surrounding the TATA box: implication of the microphthalmia gene product [4].
  • These regions, when fused to the proximal, or "TATA box," element of the herpes simplex virus thymidine kinase promoter, are able to direct Sp1-dependent transcription in vitro [5].

High impact information on TATA Box

  • A regulated two-step mechanism of TBP binding to DNA: a solvent-exposed surface of TBP inhibits TATA box recognition [6].
  • Here, we show that a nucleosome obstructing transcription from the IFN-beta promoter slides in vivo in response to virus infection, thus exposing the previously masked TATA box and the initiation site, a requirement for transcriptional activation [7].
  • Solution structure of a TBP-TAF(II)230 complex: protein mimicry of the minor groove surface of the TATA box unwound by TBP [8].
  • Here we show that the MMTV promoter contains two degenerated octamer motifs immediately upstream of the TATA box that together bind OTF-1 (Oct-1, NFIII) with an affinity similar to the octamer consensus [9].
  • Transcription of the lymphocyte-specific terminal deoxynucleotidyltransferase gene begins at a single nucleotide, but no TATA box is present [10].

Chemical compound and disease context of TATA Box


Biological context of TATA Box

  • MLTF binds specifically and with high affinity to sequences upstream of the TATA box of the major late promoter [16].
  • The enhanceosome is assembled in the nucleosome-free enhancer region of the IFN-beta gene, leading to the modification and remodeling of a strategically positioned nucleosome that masks the TATA box and the start site of transcription [17].
  • Several potential RNA polymerase termination sites exist in the immediate 3' flanking regions of the loci studied; however, no TATA box is found in the immediate 5' flanking sequences [18].
  • Minimal promoter elements that can function independently or together, depending on the specific promoter, include the upstream TATA box and a pyrimidine-rich initiator (Inr) overlapping the transcription start site [19].
  • By using a synthetic octamer oligonucleotide inserted upstream of the beta-globin TATA box we show here that the octamer element by itself is sufficient for directing lymphocyte-specific RNA synthesis when within 70 base pairs of the start site of transcription [20].

Anatomical context of TATA Box


Associations of TATA Box with chemical compounds

  • The previously described B factor (an RNA polymerase II transcription factor that binds to the TATA box), isolated from nonshocked cells, is significantly reduced in both binding and transcriptional activity in heat-shocked cells [26].
  • (2) Cavities in the interface between TBP and the minor-groove face of the AdMLP TATA box accommodate the exocyclic NH(2) groups of G in a TACA box and in a TATAAG box [27].
  • We show here that a 2-3 bp mispositioning of the nucleosome covering the TATA box at PHO5 induces a dependency on the acetylatable lysine residues of the histone H4 N-terminal region and on the TFIID-associated bromodomain factor Bdf1 [28].
  • Proline-rich domains, as e.g. in AP-2 and CTF/NF1, with considerable promoter activity and low enhancer activity in mammalian cells stimulate transcription in yeast only from a position close to the TATA box [29].
  • An Sp1-like factor and a guanine stretch-binding protein were found to bind to overlapping sites immediately upstream of the TATA box [30].

Gene context of TATA Box


Analytical, diagnostic and therapeutic context of TATA Box


  1. Mechanism of TATA-binding protein recruitment to a TATA-less class III promoter. White, R.J., Jackson, S.P. Cell (1992) [Pubmed]
  2. Nucleosome loss activates yeast downstream promoters in vivo. Han, M., Grunstein, M. Cell (1988) [Pubmed]
  3. The functional BPV-1 E2 trans-activating protein can act as a repressor by preventing formation of the initiation complex. Dostatni, N., Lambert, P.F., Sousa, R., Ham, J., Howley, P.M., Yaniv, M. Genes Dev. (1991) [Pubmed]
  4. Regulation of tyrosinase gene expression by cAMP in B16 melanoma cells involves two CATGTG motifs surrounding the TATA box: implication of the microphthalmia gene product. Bertolotto, C., Bille, K., Ortonne, J.P., Ballotti, R. J. Cell Biol. (1996) [Pubmed]
  5. Transcription factor Sp1 recognizes promoter sequences from the monkey genome that are simian virus 40 promoter. Dynan, W.S., Saffer, J.D., Lee, W.S., Tjian, R. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  6. A regulated two-step mechanism of TBP binding to DNA: a solvent-exposed surface of TBP inhibits TATA box recognition. Zhao, X., Herr, W. Cell (2002) [Pubmed]
  7. Nucleosome sliding via TBP DNA binding in vivo. Lomvardas, S., Thanos, D. Cell (2001) [Pubmed]
  8. Solution structure of a TBP-TAF(II)230 complex: protein mimicry of the minor groove surface of the TATA box unwound by TBP. Liu, D., Ishima, R., Tong, K.I., Bagby, S., Kokubo, T., Muhandiram, D.R., Kay, L.E., Nakatani, Y., Ikura, M. Cell (1998) [Pubmed]
  9. Ubiquitous transcription factor OTF-1 mediates induction of the MMTV promoter through synergistic interaction with hormone receptors. Brüggemeier, U., Kalff, M., Franke, S., Scheidereit, C., Beato, M. Cell (1991) [Pubmed]
  10. The "initiator" as a transcription control element. Smale, S.T., Baltimore, D. Cell (1989) [Pubmed]
  11. Effect of bilirubin UDP glucuronosyltransferase 1 gene TATA box genotypes on serum bilirubin concentrations in chronic liver injuries. Doyama, H., Okada, T., Kobayashi, T., Suzuki, A., Takeda, Y., Mabuchi, H. Hepatology (2000) [Pubmed]
  12. Generation and functional analyses for base-substitution mutants of the adenovirus 2 major late promoter. Yu, Y.T., Manley, J.L. Nucleic Acids Res. (1984) [Pubmed]
  13. Cloning of the rat fibroblast growth factor-2 promoter region and its response to mitogenic stimuli in glioma C6 cells. Pasumarthi, K.B., Jin, Y., Cattini, P.A. J. Neurochem. (1997) [Pubmed]
  14. Vitamin D represses retinoic acid-dependent transactivation of the retinoic acid receptor-beta2 promoter: the AF-2 domain of the vitamin D receptor is required for transrepression. Jiménez-Lara, A.M., Aranda, A. Endocrinology (1999) [Pubmed]
  15. The role of the TATA box in the hormonal regulation of phosphoenolpyruvate carboxykinase gene expression. Tebbey, P.W., Hall, R.K., Granner, D.K. Biochem. Biophys. Res. Commun. (1995) [Pubmed]
  16. An RNA polymerase II transcription factor binds to an upstream element in the adenovirus major late promoter. Carthew, R.W., Chodosh, L.A., Sharp, P.A. Cell (1985) [Pubmed]
  17. Ordered recruitment of chromatin modifying and general transcription factors to the IFN-beta promoter. Agalioti, T., Lomvardas, S., Parekh, B., Yie, J., Maniatis, T., Thanos, D. Cell (2000) [Pubmed]
  18. Human U1 loci: genes for human U1 RNA have dramatically similar genomic environments. Manser, T., Gesteland, R.F. Cell (1982) [Pubmed]
  19. Cooperative interaction of an initiator-binding transcription initiation factor and the helix-loop-helix activator USF. Roy, A.L., Meisterernst, M., Pognonec, P., Roeder, R.G. Nature (1991) [Pubmed]
  20. An octamer oligonucleotide upstream of a TATA motif is sufficient for lymphoid-specific promoter activity. Wirth, T., Staudt, L., Baltimore, D. Nature (1987) [Pubmed]
  21. A pituitary-specific trans-acting factor can stimulate transcription from the growth hormone promoter in extracts of nonexpressing cells. Bodner, M., Karin, M. Cell (1987) [Pubmed]
  22. A downstream initiation element required for efficient TATA box binding and in vitro function of TFIID. Nakatani, Y., Horikoshi, M., Brenner, M., Yamamoto, T., Besnard, F., Roeder, R.G., Freese, E. Nature (1990) [Pubmed]
  23. Interferon regulatory factor-2 is a transcriptional activator in muscle where It regulates expression of vascular cell adhesion molecule-1. Jesse, T.L., LaChance, R., Iademarco, M.F., Dean, D.C. J. Cell Biol. (1998) [Pubmed]
  24. TATA-dependent enhancer stimulation of promoter activity in mice is developmentally acquired. Majumder, S., DePamphilis, M.L. Mol. Cell. Biol. (1994) [Pubmed]
  25. Interferon-gamma-dependent inducible expression of the human interleukin-12 p35 gene in monocytes initiates from a TATA-containing promoter distinct from the CpG-rich promoter active in Epstein-Barr virus-transformed lymphoblastoid cells. Hayes, M.P., Murphy, F.J., Burd, P.R. Blood (1998) [Pubmed]
  26. A Drosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp 70 gene. Parker, C.S., Topol, J. Cell (1984) [Pubmed]
  27. TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. Patikoglou, G.A., Kim, J.L., Sun, L., Yang, S.H., Kodadek, T., Burley, S.K. Genes Dev. (1999) [Pubmed]
  28. Precise nucleosome positioning and the TATA box dictate requirements for the histone H4 tail and the bromodomain factor Bdf1. Martinez-Campa, C., Politis, P., Moreau, J.L., Kent, N., Goodall, J., Mellor, J., Goding, C.R. Mol. Cell (2004) [Pubmed]
  29. Functional differences between mammalian transcription activation domains at the yeast GAL1 promoter. Künzler, M., Braus, G.H., Georgiev, O., Seipel, K., Schaffner, W. EMBO J. (1994) [Pubmed]
  30. Interaction of nuclear factors with the upstream region of the alpha-subunit gene of chicken muscle acetylcholine receptor: variations with muscle differentiation and denervation. Piette, J., Klarsfeld, A., Changeux, J.P. EMBO J. (1989) [Pubmed]
  31. GAL4 derivatives function alone and synergistically with mammalian activators in vitro. Lin, Y.S., Carey, M.F., Ptashne, M., Green, M.R. Cell (1988) [Pubmed]
  32. A basal transcription factor that activates or represses transcription. Willy, P.J., Kobayashi, R., Kadonaga, J.T. Science (2000) [Pubmed]
  33. Initiation on chromatin templates in a yeast RNA polymerase II transcription system. Lorch, Y., LaPointe, J.W., Kornberg, R.D. Genes Dev. (1992) [Pubmed]
  34. GAL4 disrupts a repressing nucleosome during activation of GAL1 transcription in vivo. Axelrod, J.D., Reagan, M.S., Majors, J. Genes Dev. (1993) [Pubmed]
  35. Lymphoid enhancer factor 1 directs hair follicle patterning and epithelial cell fate. Zhou, P., Byrne, C., Jacobs, J., Fuchs, E. Genes Dev. (1995) [Pubmed]
  36. Identification of a novel first exon in the human dystrophin gene and of a new promoter located more than 500 kb upstream of the nearest known promoter. Nishio, H., Takeshima, Y., Narita, N., Yanagawa, H., Suzuki, Y., Ishikawa, Y., Ishikawa, Y., Minami, R., Nakamura, H., Matsuo, M. J. Clin. Invest. (1994) [Pubmed]
  37. The Wilms' tumor suppressor gene (wt1) product regulates Dax-1 gene expression during gonadal differentiation. Kim, J., Prawitt, D., Bardeesy, N., Torban, E., Vicaner, C., Goodyer, P., Zabel, B., Pelletier, J. Mol. Cell. Biol. (1999) [Pubmed]
  38. The dual effect of adenovirus type 5 E1A 13S protein on NF-kappaB activation is antagonized by E1B 19K. Schmitz, M.L., Indorf, A., Limbourg, F.P., Städtler, H., Traenckner, E.B., Baeuerle, P.A. Mol. Cell. Biol. (1996) [Pubmed]
  39. NFkappaB and Sp1 elements are necessary for maximal transcription of toll-like receptor 2 induced by Mycobacterium avium. Wang, T., Lafuse, W.P., Zwilling, B.S. J. Immunol. (2001) [Pubmed]
  40. Transcriptional regulation of apolipoprotein A-I gene expression by the nuclear receptor RORalpha. Vu-Dac, N., Gervois, P., Grötzinger, T., De Vos, P., Schoonjans, K., Fruchart, J.C., Auwerx, J., Mariani, J., Tedgui, A., Staels, B. J. Biol. Chem. (1997) [Pubmed]
WikiGenes - Universities