The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Characteristics of self-quenching of the fluorescence of lipid-conjugated rhodamine in membranes.

Self- or concentration quenching of octadecylrhodamine B (C18-Rh) fluorescence increases linearly in egg phosphatidylcholine (PC) vesicles but exponentially in vesicles composed of egg PC:cholesterol, 1:1, as the probe concentration is raised to 10 mol%. Cholesterol-dependent enhancement of self-quenching also occurs when N-(lissamine-rhodamine-B-sulfonyl)dioleoylphosphatidylethanolamine is substituted for C18-Rh and resembles that in dipalmitoylphosphatidylcholine vesicles below, as opposed to above, the phase transition. These effects are not due to changes in dimer:monomer absorbance. Stern-Volmer plots indicate a dependence of quenching on nonfluorescent dimers both in the presence and absence of cholesterol. Decreases in fluorescence lifetimes with increasing probe concentration parallel decreases in residual fluorescence of C18-Rh with increasing probe concentration in PC and PC + cholesterol membranes, respectively. Decreases in the steady-state polarization of C18-Rh fluorescence as its concentration is raised to 10 mol% indicate energy transfer with emission between probe molecules in PC and to a lesser extent in PC + cholesterol membranes. The calculated R0 for 50% efficiency of energy transfer from excited state probe to monomer was 55-58 A and to dimer was 27 A. Since lateral diffusion of C18-Rh is probably too slow to permit collisional quenching during the lifetime of the probe, even if C18-Rh were concentrated in a separate phase, C18-Rh self-quenching appears to be due mainly to energy transfer without emission to nonfluorescent dimers.[1]


WikiGenes - Universities