Engineering of the mRNA-interfering complementary RNA immune system against viral infection.
Creation of an artificial mRNA-interfering complementary RNA (micRNA) immune system, utilizing anti-sense RNAs to inhibit viral gene expression, has been shown to be an effective way to prevent viral infection. In the RNA coliphage SP, the gene for the maturation protein was found to be the best target for this type of immune system; mRNA-interfering complementary RNAs specific to the genes for coat protein and replicase were less effective in preventing infection. The greatest inhibitory effect was observed with a 240-base sequence encompassing the 24-base noncoding region of the maturation gene plus the 216-base coding sequence. Significantly, even a 19-base sequence covering only the Shine-Dalgarno sequence (ribosome-binding region) without the coding region exerted a strong inhibitory effect on phage proliferation. In contrast to the highly specific action against phage SP exhibited by the longer mRNA-interfering complementary RNA, the specificity with the shorter mRNA-interfering complementary RNA was broadened to phages Q beta and GA as well as SP, all of which are classified in the different groups of RNA coliphages. Therefore, this type of anti-viral reagent may be designed to have a particular breadth of specificity, thus increasing its value in various research and possibly clinical applications.[1]References
- Engineering of the mRNA-interfering complementary RNA immune system against viral infection. Hirashima, A., Sawaki, S., Inokuchi, Y., Inouye, M. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg