The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A rat monoclonal antibody which interacts with mammalian ornithine decarboxylase at an epitope involved in phosphorylation.

Ornithine decarboxylase was purified from androgen-treated mouse kidney to homogeneity and high specific activity. The purified enzyme was utilized for production and screening of rat monoclonal and polyclonal antibodies. A rat monoclonal antibody was isolated which was capable of immunoprecipitation of native mouse kidney ornithine decarboxylase activity or the [3H]difluoromethylornithine-inactivated enzyme. Phosphorylation of mouse ornithine decarboxylase by casein kinase-II prior to immunoprecipitation led to complete loss of the epitope recognized by the monoclonal antibody but did not alter recognition by polyclonal antibody. Mammalian ornithine decarboxylase activity obtained from several species, in crude or partially purified extracts, was subjected to quantitative immunoprecipitation with monoclonal and polyclonal antibody. Polyclonal antibody immunoprecipitated all of the ornithine decarboxylase activity from every extract tested, while monoclonal antibody was capable of only limited immunoprecipitation (60-80%). Due to the inability of the monoclonal antibody to recognize ornithine decarboxylase phosphorylated in vitro by casein kinase-II and the partial immunoprecipitation of ornithine decarboxylase activity from cell extracts, a portion of the ornithine decarboxylase molecule population must exist in a phosphorylated state. This immunological evidence further confirms existing data that the enzyme exists in at least two distinct forms.[1]

References

 
WikiGenes - Universities