The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Inhibition and stimulation of photoreceptor phosphodiesterases by dipyridamole and M&B 22,948.

Few high affinity inhibitors of the photoreceptor phosphodiesterases have been identified. We show here that dipyridamole and M&B 22,948 (Zaprinast), potent inhibitors of the cGMP-binding, cGMP-specific phosphodiesterase (PDE), also inhibit trypsin- or transducin-activated bovine rod and cone photoreceptor phosphodiesterases at submicromolar concentrations. Dixon plots demonstrated that the inhibition of trypsin-activated rod PDE was competitive, with Ki values of 140 nM for M&B 22,948 and 380 nM for dipyridamole. Both of these drugs were much more potent than other PDE inhibitors, including isobutylmethylxanthine (IBMX). These results reinforce the suggestion that the photoreceptor and the cGMP-binding, cGMP-specific PDE are closely related. In addition, the high affinity and selectivity of these agents should make them useful for probing the regulation and function of PDE in the photoreceptor. At low substrate concentrations, the effects of these drugs on basal unactivated PDE activity were similar to those seen with trypsin- or transducin-activated PDE. At millimolar substrate concentrations, however, the effects of the drugs were biphasic; PDE activity was stimulated at drug concentrations from 1 to 10 microM and inhibited at higher concentrations. Stimulation was not observed with IBMX. This stimulation of activity apparently was not an allosteric effect caused by direct binding of the dipyridamole and M&B 22,948 to the high affinity noncatalytic cGMP binding sites on the PDEs; whereas no cooperativity of cGMP binding to this site has been demonstrated, the drugs actually stimulated the binding of low concentrations of cGMP to this site. In addition, whereas preincubation with cGMP and cGMP analogs blocked the stimulation exerted by the drugs, they did so only at much higher concentrations than those necessary for saturation of the high affinity noncatalytic cGMP site. Because the stimulation can only be seen at higher substrate levels than are thought to exist in the photoreceptor, only the inhibitory effects of the drugs are likely to be pharmacologically relevant. However, the stimulation exerted by these drugs may point to a hitherto unknown allosteric interaction between the catalytic and regulatory sites on the PDE or to a previously unrecognized regulatory site.[1]


WikiGenes - Universities