The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Altered branching of serotonin-containing neurons in Drosophila mutants unable to synthesize serotonin and dopamine.

The anatomy of peripheral serotonin-containing fibers (5-HT fibers) in the gut of wild-type Drosophila larvae was compared to mutants deficient in the gene that encodes the enzyme dopa decarboxylase (DfDdc mutants). The 5-HT fibers, located in the proventriculus and midgut, were visualized immunocytochemically by using a monoclonal antibody against 5-HT. Since DfDdc larvae are devoid of 5-HT and dopamine in the nervous system, the highly selective uptake capability of 5-HT neurons was used to visualize the 5-HT fibers. We found that the absence of 5-HT and dopamine in the nervous system of DfDdc animals does not prevent 5-HT fibers from reaching their appropriate targets. However, these fibers in the mutant show a 2-fold increase in the extent of branching. This effect is specific to 5-HT fibers, since glutamate-like and FMRFamide-like immunoreactive fibers of the proventriculus and midgut remain unaffected in the mutant. Low but detectable levels of dopamine and 5-HT in the CNS are sufficient to prevent the increase in arborization, as indicated by analyses of a temperature-sensitive Ddc allele (Ddcts2), which has very low dopa decarboxylase activity. The abnormally extensive branching of 5-HT fibers also can be partially rescued by feeding DfDdc larvae with dopamine. In contrast, feeding with a 5-HT-containing diet had no effect on the mutant phenotype. Hypotheses that could explain the mutant phenotype are proposed.[1]

References

 
WikiGenes - Universities