The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Evaluation of selective actions of dopamine D-1 and D-2 receptor agonists and antagonists on opioid antinociception.

The effect of the selective dopamine receptor agonists SKF 38393 (D-1) and quinpirole (D-2) on nociception was studied in the mouse tail immersion test. The D-1 receptor agonist induced mild hyperalgesia whereas the D-2 agonist produced antinociception. Pretreatment with either the selective D-1 receptor antagonist SCH 23390 or the D-2 receptor antagonist (-)-sulpiride converted the hyperalgesia produced by the D-1 agonist into an antinociceptive response whereas the effect of the D-2 receptor agonist was significantly antagonised. The antinociceptive response of selective opioid agonists was also studied in combination with selective dopamine receptor agonists and antagonists. Sufentanil (mu-opioid) antinociception was enhanced in animals pretreated with (-)-sulpiride but not SCH 23390. In animals co-administered sufentanil with SKF 38393 there was a reduced antinociceptive effect whilst quinpirole enhanced the action of sufentanil. Likewise, antinociception induced by the kappa-opioid agonist U50,488H was unaltered in animals pretreated with SCH 23390, increased by (-)-sulpiride, and reduced by SKF 38393. delta-Opioid antinociception induced by [D-Ala2,D-Leu5]enkephaline remained unmodified following pretreatment with either (-)-sulpiride or SCH 23390 but was potentiated in animals which received both the delta-agonist and the D-2 receptor agonist. It is concluded that D-2 receptor agonists not only have intrinsic antinociceptive activity, but can also potentiate opioid-induced antinociception. Similarly, dopamine D-2 receptor antagonists appear to potentiate opioid-induced antinociception in this nociceptive model.[1]

References

 
WikiGenes - Universities