The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

SUFENTANIL     N-[4-(methoxymethyl)-1-(2- thiophen-2...

Synonyms: Sufentanyl, Chronogesic, Sulfentanil, Sulfentanyl, Sufentanilum, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of SUFENTANIL

 

Psychiatry related information on SUFENTANIL

 

High impact information on SUFENTANIL

  • Halothane-morphine compared with high-dose sufentanil for anesthesia and postoperative analgesia in neonatal cardiac surgery [1].
  • Similarly, [D-Ala2, D-Leu5]enkephalin and sufentanil selectively protected binding sites for 3H-labeled [D-Ala2, D-Leu5]enkephalin and [3H]dihydromorphine, respectively [11].
  • In contrast, patients who received 72 h of PCV had lower CRS, PaO2, CI, DO2, and Q VA/Q T values (p < 0.05) and required higher doses of sufentanil (p < 0.05), midazolam (p < 0.05), noradrenalin (p < 0.05), and dobutamine (p < 0.05) [12].
  • Relationship between the pharmacokinetics and the analgesic and respiratory pharmacodynamics of epidural sufentanil [13].
  • Enrichment was obtained by treatment of membranes with the alkylating agent beta-chlornaltrexamine in the presence of appropriate protecting ligands, sufentanil for mu sites, [D-Ala2, D-Leu5] enkephalin for delta sites, and dynorphin A for kappa sites [14].
 

Chemical compound and disease context of SUFENTANIL

 

Biological context of SUFENTANIL

  • We previously demonstrated that chronic treatment of rats with the mu-opioid receptor agonist sufentanil induced pharmacological tolerance associated with mu-opioid receptor desensitization and down-regulation [20].
  • Chronic s.c. infusion of sufentanil (2 microg/h) for 7 days, which has been shown to induce tolerance to the opioid antinociceptive effect, produced an up-regulation of DHP binding sites [21].
  • The area under the concentration-time curve (AUC) from zero to 1h, 2h, 3h, tracheal extubation and infinity, the absorption and distribution half-lives, maximum plasma and CSF concentrations, time to the peak concentration of sufentanil, and the fraction of sufentanil that reached the central circulation after epidural administration were assessed [22].
  • We developed another pain model, postpartum resection of the fallopian tubes for sterilisation, in which each patient serves as her own control when one side is infiltrated with the active drug (in this study sufentanil 5 mg) and the contralateral side with normal saline [23].
  • Thus, although inactivation of the inhibitory signal transduction pathway (via pertussis toxin) is sufficient to unmask excitatory sufentanil effects in opiate naive preparations, this mechanism cannot explain the reversal of sufentanil inhibition to facilitation that is observed in tolerant/dependent tissue [24].
 

Anatomical context of SUFENTANIL

 

Associations of SUFENTANIL with other chemical compounds

  • For the remaining 41 patients, target concentrations associated with adequate analgesia were achieved for both sufentanil and fentanyl [28].
  • Alfentanil and sufentanil need further investigations to define their pharmacokinetic-pharmacodynamic properties in neonates [29].
  • Administration of the calcium channel blocker nimodipine during chronic treatment with sufentanil prevented mu-opioid receptor down-regulation, induced down-stream supersensitization, and produced supersensitivity to the opioid effects [20].
  • The ontogeny of mu- and kappa-receptor function was determined by assessing the PRL response to the mu-agonist sufentanil (SUF) and the kappa-agonist U50488 in 5-, 10-, 15-, 20-, and 60-day-old rats [30].
  • Addition of cholesteryl hemisuccinate (CHS) to cell membranes increased membrane microviscosity and reduced the inhibitory effect of sodium and guanine nucleotides on the affinity of the full agonists sufentanil and [D-Ala2,N-MePhe4,Gly-ol5]enkephalin (DAMGO) for the mu-opioid receptor [31].
 

Gene context of SUFENTANIL

 

Analytical, diagnostic and therapeutic context of SUFENTANIL

  • To establish the relationships between epidural sufentanil analgesia and respiratory effects and to determine the pharmacokinetics of the drug, 22 adult patients undergoing thoracotomy were put into a randomized, double-blind study and received either 30, 50, or 75 micrograms per dose in 20 ml normal saline solution [13].
  • Comparison of intranasal midazolam and sufentanil premedication in pediatric outpatients [3].
  • Absence of spontaneous breathing (PCV Group) was induced with sufentanil and midazolam (RSS of 5) and neuromuscular blockade [12].
  • CONCLUSION: Both intranasal midazolam and sufentanil provide rapid, safe, and effective sedation in small children before anesthesia for ambulatory surgery [3].
  • After 30 min from the end of anaesthesia onwards, 26 out of 30 patients observed significant pain relief on the side of the sufentanil infiltration, which in 11 patients lasted until the end of the observation period 24 h postoperatively; no difference was observed in the control group [23].

References

  1. Halothane-morphine compared with high-dose sufentanil for anesthesia and postoperative analgesia in neonatal cardiac surgery. Anand, K.J., Hickey, P.R. N. Engl. J. Med. (1992) [Pubmed]
  2. Effects of steal-prone anatomy on intraoperative myocardial ischemia. The SPI Research Group. Leung, J.M., Hollenberg, M., O'Kelly, B.F., Kao, A., Mangano, D.T. J. Am. Coll. Cardiol. (1992) [Pubmed]
  3. Comparison of intranasal midazolam and sufentanil premedication in pediatric outpatients. Zedie, N., Amory, D.W., Wagner, B.K., O'Hara, D.A. Clin. Pharmacol. Ther. (1996) [Pubmed]
  4. Antagonistic effects of naloxone and naloxonazine on sufentanil-induced antinociception and respiratory depression in rats. Verborgh, C., Meert, T.F. Pain (1999) [Pubmed]
  5. Sufentanil does not preempt pain after abdominal hysterectomy. Sarantopoulos, C., Fassoulaki, A. Pain (1996) [Pubmed]
  6. Magnitude of acute tolerance to opioids is not related to their potency. Kissin, I., Brown, P.T., Bradley, E.L. Anesthesiology (1991) [Pubmed]
  7. Walking with labor epidural analgesia: the impact of bupivacaine concentration and a lidocaine-epinephrine test dose. Cohen, S.E., Yeh, J.Y., Riley, E.T., Vogel, T.M. Anesthesiology (2000) [Pubmed]
  8. Differential cross-tolerance between intrathecal morphine and sufentanil in the rat. Sosnowski, M., Yaksh, T.L. Anesthesiology (1990) [Pubmed]
  9. Increased dopamine receptor sensitivity in the rat following acute administration of sufentanil, U50,488H and D-Ala2-D-Leu5-enkephalin. Rooney, K.F., Armstrong, R.A., Sewell, R.D. Naunyn Schmiedebergs Arch. Pharmacol. (1991) [Pubmed]
  10. No reduction in the sufentanil requirement of elderly patients undergoing ventilatory support in the medical intensive care unit. Hofbauer, R., Tesinsky, P., Hammerschmidt, V., Kofler, J., Staudinger, T., Kordova, H., Vrastiolova, M., Frass, M., Freye, E. European journal of anaesthesiology. (1999) [Pubmed]
  11. Preparation of brain membranes containing a single type of opioid receptor highly selective for dynorphin. James, I.F., Chavkin, C., Goldstein, A. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  12. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Putensen, C., Zech, S., Wrigge, H., Zinserling, J., Stüber, F., Von Spiegel, T., Mutz, N. Am. J. Respir. Crit. Care Med. (2001) [Pubmed]
  13. Relationship between the pharmacokinetics and the analgesic and respiratory pharmacodynamics of epidural sufentanil. Koren, G., Sandler, A.N., Klein, J., Whiting, W.C., Lau, L.C., Slavchenko, P., Daley, D. Clin. Pharmacol. Ther. (1989) [Pubmed]
  14. Site-directed alkylation of multiple opioid receptors. I. Binding selectivity. James, I.F., Goldstein, A. Mol. Pharmacol. (1984) [Pubmed]
  15. Fentanyl and sufentanil increase intracranial pressure in head trauma patients. Weinstabl, C., Spiss, C.K. Anesthesiology (1993) [Pubmed]
  16. Muscular spasm in the lower limbs of laboring patients after intrathecal administration of epinephrine and sufentanil. Newman, L.M., Patel, R.V., Krolick, T., Ivankovich, A.D. Anesthesiology (1994) [Pubmed]
  17. Effects of sufentanil or ketamine administered in target-controlled infusion on the cerebral hemodynamics of severely brain-injured patients. Bourgoin, A., Albanèse, J., Léone, M., Sampol-Manos, E., Viviand, X., Martin, C. Crit. Care Med. (2005) [Pubmed]
  18. The risk of myocardial ischemia in patients receiving desflurane versus sufentanil anesthesia for coronary artery bypass graft surgery. The S.P.I. Research Group. Helman, J.D., Leung, J.M., Bellows, W.H., Pineda, N., Roach, G.W., Reeves, J.D., Howse, J., McEnany, M.T., Mangano, D.T. Anesthesiology (1992) [Pubmed]
  19. Interaction between anesthetics and the sodium-hydrogen exchange inhibitor HOE 642 (cariporide) in ischemic and reperfused rat hearts. Mathur, S., Karmazyn, M. Anesthesiology (1997) [Pubmed]
  20. Changes in the expression of G protein-coupled receptor kinases and beta-arrestin 2 in rat brain during opioid tolerance and supersensitivity. Hurlé, M.A. J. Neurochem. (2001) [Pubmed]
  21. Opioid tolerance and supersensitivity induce regional changes in the autoradiographic density of dihydropyridine-sensitive calcium channels in the rat central nervous system. Díaz, A., Flórez, J., Pazos, A., Hurlé, M.A. Pain (2000) [Pubmed]
  22. Comparative absorption and distribution pharmacokinetics of intravenous and epidural sufentanil for major abdominal surgery. Taverne, R.H., Ionescu, T.I., Nuyten, S.T. Clinical pharmacokinetics. (1992) [Pubmed]
  23. Peripherally administered sufentanil inhibits pain perception after postpartum tubal ligation. Rorarius, M., Suominen, P., Baer, G., Pajunen, P., Tuimala, R., Laippala, P. Pain (1999) [Pubmed]
  24. Altered mu-opiate receptor-G protein signal transduction following chronic morphine exposure. Wang, L., Gintzler, A.R. J. Neurochem. (1997) [Pubmed]
  25. Bimodal opioid regulation of cyclic AMP formation: implications for positive and negative coupling of opiate receptors to adenylyl cyclase. Wang, L., Gintzler, A.R. J. Neurochem. (1994) [Pubmed]
  26. Effects of opiate drugs on Fas-associated protein with death domain (FADD) and effector caspases in the rat brain: regulation by the ERK1/2 MAP kinase pathway. García-Fuster, M.J., Miralles, A., García-Sevilla, J.A. Neuropsychopharmacology (2007) [Pubmed]
  27. Comparative efficacy of patient-controlled administration of morphine, hydromorphone, or sufentanil for the treatment of oral mucositis pain following bone marrow transplantation. Coda, B.A., O'Sullivan, B., Donaldson, G., Bohl, S., Chapman, C.R., Shen, D.D. Pain (1997) [Pubmed]
  28. Relative analgesic potency of fentanyl and sufentanil during intermediate-term infusions in patients after long-term opioid treatment for chronic pain. Reynolds, L., Rauck, R., Webster, L., DuPen, S., Heinze, E., Portenoy, R., Katz, N., Charapata, S., Wallace, M., Fisher, D.M. Pain (2004) [Pubmed]
  29. Clinical pharmacokinetics of sedatives in neonates. Jacqz-Aigrain, E., Burtin, P. Clinical pharmacokinetics. (1996) [Pubmed]
  30. Mu- and kappa-opiate receptor control of prolactin secretion in rats: ontogeny and interaction with serotonin. Blackford, S.P., Little, P.J., Kuhn, C.M. Endocrinology (1992) [Pubmed]
  31. Membrane microviscosity modulates mu-opioid receptor conformational transitions and agonist efficacy. Emmerson, P.J., Clark, M.J., Medzihradsky, F., Remmers, A.E. J. Neurochem. (1999) [Pubmed]
  32. Stimulation of mitogen-activated protein kinase kinases (MEK1/2) by mu-, delta- and kappa-opioid receptor agonists in the rat brain: regulation by chronic morphine and opioid withdrawal. Asensio, V.J., Miralles, A., García-Sevilla, J.A. Eur. J. Pharmacol. (2006) [Pubmed]
  33. Identification of human liver cytochrome P-450 3A4 as the enzyme responsible for fentanyl and sufentanil N-dealkylation. Tateishi, T., Krivoruk, Y., Ueng, Y.F., Wood, A.J., Guengerich, F.P., Wood, M. Anesth. Analg. (1996) [Pubmed]
  34. Possible involvement of multiple cytochrome P450S in fentanyl and sufentanil metabolism as opposed to alfentanil. Guitton, J., Buronfosse, T., Désage, M., Lepape, A., Brazier, J.L., Beaune, P. Biochem. Pharmacol. (1997) [Pubmed]
  35. Hormonal responses to cardiac surgery: effects of sufentanil, somatostatin and ganglion block. Desborough, J.P., Hall, G.M., Hart, G.R., Burrin, J.M., Bloom, S.R. British journal of anaesthesia. (1990) [Pubmed]
 
WikiGenes - Universities