The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

CHEMBL13668     9-chloro-4-methyl-2-phenyl- 4...

Synonyms: AGN-PC-00K4N9, AG-J-84932, SureCN5722114, ACMC-20dd35, CHEBI:73297, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of SCH-23390

 

Psychiatry related information on SCH-23390

  • In contrast, full retrograde amnesia was obtained when SCH 23390 (0.5 microg/side), a D1/D5 receptor antagonist, was infused into the hippocampus 3 or 6 h after training [6].
  • This was assessed by studying how retrodialysis application of NMDA (50 mM, 10 min) affects motor activity and NAc DA levels during simultaneous retrodialysis administration of the D1/D5 receptor antagonist SCH 23390 (100 and 250 microM, 60 min) or the D2 receptor antagonist raclopride (100 and 250 microM, 60 min) [7].
  • SCH 23390 (0.1 to 2.0 mg/kg) increased slow-wave sleep (SWS), whereas wakefulness (W) and REMS were decreased [8].
  • Over a very small dose range (0.003-0.03 mg/kg, subcutaneously), SCH 23390 significantly increased the time spent in total sleep, including rapid eye movement (REM) and non-REM sleep [9].
  • A comparison of the effects of the D1 receptor antagonists SCH 23390 and SCH 39166 on suppression of feeding behavior by the D1 agonist SKF38393 [10].
 

High impact information on SCH-23390

  • Pretreatment with intraperitoneal injection of 20 microgram/kg SCH 23390, a D1 receptor antagonist, reversed the SKF 81297 response [11].
  • Apomorphine increased sensory stimulation-evoked gene expression in the barrel cortex, and intrastriatal infusion of SCH-23390 attenuated this effect [12].
  • Regression analysis showed that estimates of CFT k3/k4 were positively correlated with those of SCH 23390 k3/k4 in the striatum in normal control, whereas the two binding estimates were less positively correlated in the caudate and inversely correlated in the putamen in PD [13].
  • In some animals, D1 (SCH 23390) or D2 (pimozide) receptor antagonists were injected systemically prior to or during self-administration sessions to assess the effects of dopamine receptor blockade on anticipatory and postcocaine responses [14].
  • The D1 and D2 receptor binding sites were labeled with the selective high-affinity antagonists SCH 23390 and N-(p-aminophenethyl)-spiperone (NAPS), respectively, coupled to either Bodipy or Texas red fluorophores [15].
 

Chemical compound and disease context of SCH-23390

 

Biological context of SCH-23390

 

Anatomical context of SCH-23390

 

Associations of SCH-23390 with other chemical compounds

 

Gene context of SCH-23390

  • Selective stimulation of D1 receptors with the agonist SKF R-38393 caused p-ERK1/2, but not p-JNK or p-p38 MAPK activation, in a manner sensitive to the receptor-selective antagonist SCH 23390, protein kinase A inhibition (KT5720), and MEK1/2 inhibition (U0126 or PD98059) [34].
  • Furthermore, THC-induced phosphorylation of the transcription factor Elk-1, and up-regulation of zif268 mRNA expression are blocked by SL327, a specific inhibitor of MAPK/ERK kinase (MEK), the upstream kinase of ERK, as well as SCH 23390 [35].
  • The D(5) receptor agonist fenoldopam decreases PLD2, but not PLD1, expression and activity in human embryonic kidney-293 cells heterologously expressing the human D(5) receptor, effects that are blocked by the D(5) receptor antagonist SCH-23390 [36].
  • Pretreatment with the D1 antagonist SCH-23390 ((R)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7-OL maleate) inhibited the prolonged increase in MPC phospho-ERK, whereas the 5-HT2 receptor antagonist ketanserin (3-[2-[4-(4-fluorobenzoyl)-1-piperidinyl]ethyl]-2,4(1H,3H)-quinazolinedione tartrate) was ineffective [37].
  • Interestingly, catalepsy induced by raclopride, a specific dopamine D(2)/D(3) antagonist is completely abolished in NGFI-B-deficient mice whereas the cataleptic response to SCH 23390, a dopamine D(1) agonist, is preserved [38].
 

Analytical, diagnostic and therapeutic context of SCH-23390

  • In situ hybridization showed that LEK-8829 induced the expression of neurotensin and ania-4 mRNAs in dopamine-intact striatum that could be completely blocked only by the combined treatment with SCH-23390 and quinpirole [39].
  • Microdialysis probes were implanted in both striata, and a D1 antagonist (SCH-23390, 100 microM) was administered through one probe and modified Ringer's solution through the other [40].
  • Since these two phenomena are causally linked, the alterations in the tubuloglomerular feedback response by the luminal application of dopamine, the D1 agonist fenoldopam, the D2 agonist bromocriptine and the D1 and D2 antagonists SCH 23390 and metoclopramide were further investigated using the micropuncture technique [41].
  • The D1 antagonist, SCH 23390, by itself (0.03-0.3 mg/kg i.v.) produced small changes in the EEG and no evidence of sedation [42].
  • When PLG (1.0 mg/kg/d.i.p.) was administered together with SCH 23390 for the initial 32 days from birth, the binding of [3H]SCH 23390 to homogenates of the striatum was unchanged from that of the control group at 8 weeks [43].

References

  1. Behavioral effects mediated by the modulatory glycine site of the NMDA receptor in the anterodorsal striatum and nucleus accumbens. Kretschmer, B.D., Schmidt, W.J. J. Neurosci. (1996) [Pubmed]
  2. Selective D2 receptor stimulation induces dyskinesia in parkinsonian monkeys. Luquin, M.R., Laguna, J., Obeso, J.A. Ann. Neurol. (1992) [Pubmed]
  3. Differential effects of D1 and D2 agonists in MPTP-treated primates: functional implications for Parkinson's disease. Boyce, S., Rupniak, N.M., Steventon, M.J., Iversen, S.D. Neurology (1990) [Pubmed]
  4. Evidence for regulation of body temperature in rats by dopamine D2 receptor and possible influence of D1 but not D3 and D4 receptors. Chaperon, F., Tricklebank, M.D., Unger, L., Neijt, H.C. Neuropharmacology (2003) [Pubmed]
  5. SK&F 87516, a close analog of fenoldopam, is a partial agonist at dopamine-1 and alpha-2 receptors and produces stimulation of 5-hydroxytryptamine-2 receptors in the cardiovascular system of the rat. Le Monnier de Gouville, A.C., Lawson, K., Thiry, C., Cavero, I. J. Pharmacol. Exp. Ther. (1991) [Pubmed]
  6. Involvement of hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats. Bernabeu, R., Bevilaqua, L., Ardenghi, P., Bromberg, E., Schmitz, P., Bianchin, M., Izquierdo, I., Medina, J.H. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  7. Hippocampal dopamine receptors modulate the motor activation and the increase in dopamine levels in the rat nucleus accumbens evoked by chemical stimulation of the ventral hippocampus. Zornoza, T., Cano-Cebrián, M.J., Miquel, M., Aragón, C., Polache, A., Granero, L. Neuropsychopharmacology (2005) [Pubmed]
  8. Sleep during acute dopamine D1 agonist SKF 38393 or D1 antagonist SCH 23390 administration in rats. Monti, J.M., Fernández, M., Jantos, H. Neuropsychopharmacology (1990) [Pubmed]
  9. The D1 dopamine receptor antagonist SCH 23390 enhances REM sleep in the rat. Trampus, M., Ongini, E. Neuropharmacology (1990) [Pubmed]
  10. A comparison of the effects of the D1 receptor antagonists SCH 23390 and SCH 39166 on suppression of feeding behavior by the D1 agonist SKF38393. Terry, P., Katz, J.L. Psychopharmacology (Berl.) (1994) [Pubmed]
  11. Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. Mizoguchi, K., Yuzurihara, M., Ishige, A., Sasaki, H., Chui, D.H., Tabira, T. J. Neurosci. (2000) [Pubmed]
  12. Regulation of rat cortex function by D1 dopamine receptors in the striatum. Steiner, H., Kitai, S.T. J. Neurosci. (2000) [Pubmed]
  13. Presynaptic and postsynaptic dopaminergic binding densities in the nigrostriatal and mesocortical systems in early Parkinson's disease: a double-tracer positron emission tomography study. Ouchi, Y., Kanno, T., Okada, H., Yoshikawa, E., Futatsubashi, M., Nobezawa, S., Torizuka, T., Sakamoto, M. Ann. Neurol. (1999) [Pubmed]
  14. Electrophysiological and pharmacological evidence for the role of the nucleus accumbens in cocaine self-administration in freely moving rats. Chang, J.Y., Sawyer, S.F., Lee, R.S., Woodward, D.J. J. Neurosci. (1994) [Pubmed]
  15. Cellular distribution of dopamine D1 and D2 receptors in rat medial prefrontal cortex. Vincent, S.L., Khan, Y., Benes, F.M. J. Neurosci. (1993) [Pubmed]
  16. Effects of irreversible dopamine receptor inactivation on locomotor activity and grooming in the 17- and 90-day-old rat. McDougall, S.A., Crawford, C.A., Nonneman, A.J. Psychopharmacology (Berl.) (1992) [Pubmed]
  17. Motor activity following the administration of selective D-1 and D-2 dopaminergic drugs to normal common marmosets. Löschmann, P.A., Smith, L.A., Lange, K.W., Jaehnig, P., Jenner, P., Marsden, C.D. Psychopharmacology (Berl.) (1991) [Pubmed]
  18. Synergistic effects between D-1 and D-2 dopamine antagonists on catalepsy in rats. Wanibuchi, F., Usuda, S. Psychopharmacology (Berl.) (1990) [Pubmed]
  19. Interleukin-8 as a mediator of sympathetic pain. Cunha, F.Q., Lorenzetti, B.B., Poole, S., Ferreira, S.H. Br. J. Pharmacol. (1991) [Pubmed]
  20. Separation of peripheral dopamine receptors by a selective DA1 antagonist, SCH 23390. Goldberg, L.I., Glock, D., Kohli, J.D., Barnett, A. Hypertension (1984) [Pubmed]
  21. Attenuated renal response to dopaminergic drugs in spontaneously hypertensive rats. Felder, R.A., Seikaly, M.G., Cody, P., Eisner, G.M., Jose, P.A. Hypertension (1990) [Pubmed]
  22. Characterization of dopamine receptors associated with aldosterone secretion in rat adrenal glomerulosa. Missale, C., Liberini, P., Memo, M., Carruba, M.O., Spano, P. Endocrinology (1986) [Pubmed]
  23. Dopamine induces the expression of heme oxygenase-1 by human endothelial cells in vitro. Berger, S.P., Hünger, M., Yard, B.A., Schnuelle, P., Van Der Woude, F.J. Kidney Int. (2000) [Pubmed]
  24. Net production of cerebrospinal fluid is decreased by SCH-23390. Boyson, S.J., Alexander, A. Ann. Neurol. (1990) [Pubmed]
  25. Subtypes of dopamine receptors involved in the mechanism of reinforcement. Nakajima, S. Neuroscience and biobehavioral reviews. (1989) [Pubmed]
  26. Dopamine D1 receptors of the calf parathyroid gland: identification and characterization. Niznik, H.B., Fogel, E.L., Chen, C.J., Congo, D., Brown, E.M., Seeman, P. Mol. Pharmacol. (1988) [Pubmed]
  27. Coadministration of haloperidol and SCH-23390 prevents the increase in "perforated" synapses due to either drug alone. Meshul, C.K., Janowsky, A., Casey, D.E., Stallbaumer, R.K., Taylor, B. Neuropsychopharmacology (1992) [Pubmed]
  28. Biotransformation of L-DOPA to dopamine in the substantia nigra of freely moving rats: effect of dopamine receptor agonists and antagonists. Sarre, S., Vandeneede, D., Ebinger, G., Michotte, Y. J. Neurochem. (1998) [Pubmed]
  29. Picomolar affinity of 125I-SCH 23982 for D1 receptors in brain demonstrated with digital subtraction autoradiography. Altar, C.A., Marien, M.R. J. Neurosci. (1987) [Pubmed]
  30. D1-like and D2-like dopamine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson's disease. Paul, M.L., Graybiel, A.M., David, J.C., Robertson, H.A. J. Neurosci. (1992) [Pubmed]
  31. D1 receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat. Seamans, J.K., Floresco, S.B., Phillips, A.G. J. Neurosci. (1998) [Pubmed]
  32. Identification of serotonin 5-HT3 recognition sites in membranes of N1E-115 neuroblastoma cells by radioligand binding. Hoyer, D., Neijt, H.C. Mol. Pharmacol. (1988) [Pubmed]
  33. Functional dopamine-1 receptors and DARPP-32 are expressed in human ovary and granulosa luteal cells in vitro. Mayerhofer, A., Hemmings, H.C., Snyder, G.L., Greengard, P., Boddien, S., Berg, U., Brucker, C. J. Clin. Endocrinol. Metab. (1999) [Pubmed]
  34. D1 dopamine receptor mediates dopamine-induced cytotoxicity via the ERK signal cascade. Chen, J., Rusnak, M., Luedtke, R.R., Sidhu, A. J. Biol. Chem. (2004) [Pubmed]
  35. Delta 9-tetrahydrocannabinol-induced MAPK/ERK and Elk-1 activation in vivo depends on dopaminergic transmission. Valjent, E., Pagès, C., Rogard, M., Besson, M.J., Maldonado, R., Caboche, J. Eur. J. Neurosci. (2001) [Pubmed]
  36. D5 dopamine receptor regulation of phospholipase D. Yang, Z., Asico, L.D., Yu, P., Wang, Z., Jones, J.E., Bai, R.K., Sibley, D.R., Felder, R.A., Jose, P.A. Am. J. Physiol. Heart Circ. Physiol. (2005) [Pubmed]
  37. Sustained extracellular signal-regulated kinase 1/2 phosphorylation in neonate 6-hydroxydopamine-lesioned rats after repeated D1-dopamine receptor agonist administration: implications for NMDA receptor involvement. Papadeas, S.T., Blake, B.L., Knapp, D.J., Breese, G.R. J. Neurosci. (2004) [Pubmed]
  38. The transcription factor NGFI-B (Nur77) and retinoids play a critical role in acute neuroleptic-induced extrapyramidal effect and striatal neuropeptide gene expression. Ethier, I., Beaudry, G., St-Hilaire, M., Milbrandt, J., Rouillard, C., Lévesque, D. Neuropsychopharmacology (2004) [Pubmed]
  39. Modulation of neuroleptic activity of 9,10-didehydro-N-methyl-(2-propynyl)-6-methyl-8-aminomethylergoline bimaleinate (LEK-8829) by D1 intrinsic activity in hemi-parkinsonian rats. Glavan, G., Sket, D., Zivin, M. Mol. Pharmacol. (2002) [Pubmed]
  40. Ischemia-induced changes in extracellular levels of striatal cyclic AMP: role of dopamine neurotransmission. Prado, R., Busto, R., Globus, M.Y. J. Neurochem. (1992) [Pubmed]
  41. Inhibition of tubuloglomerular feedback by the D1 agonist fenoldopam in chronically salt-loaded rats. Häberle, D.A., Königbauer, B. J. Physiol. (Lond.) (1991) [Pubmed]
  42. Synchronization of the EEG and sedation induced by neuroleptics depend upon blockade of both D1 and D2 dopamine receptors. Bo, P., Ongini, E., Giorgetti, A., Savoldi, F. Neuropharmacology (1988) [Pubmed]
  43. Attenuation of SCH 23390-induced alteration of striatal dopamine D1 receptor ontogeny by prolyl-leucyl-glycinamide in the rat. Kostrzewa, R.M., Saleh, M.I. Neuropharmacology (1989) [Pubmed]
 
WikiGenes - Universities