Identification of a noncatalytic domain in AMP deaminase that influences binding to myosin.
AMP deaminase (AMP-D) plays a critical role in energy metabolism in skeletal muscle. Prior studies have demonstrated AMP-D binds to myosin heavy chain in vitro, and it decorates the end of the A band in the myofibril. The present study presents evidence that proteolytic removal of 14 kilodaltons, presumably from the carboxy terminus, of the native 80K peptide does not eliminate catalytic activity but this deletion has a pronounced influence on binding of AMP-D to myosin in the presence of ATP. Comparison of the sequence of the rat skeletal muscle form of AMP-D to that of yeast AMP-D demonstrates conservation of an ATP binding site in the carboxy-terminal domain of the rat protein. These results provide a mechanism for regulating binding of AMP-D to myosin heavy chain in response to changes in ATP concentration and suggest a potential function for AMP-D/myosin complex formation in myocytes.[1]References
- Identification of a noncatalytic domain in AMP deaminase that influences binding to myosin. Marquetant, R., Sabina, R.L., Holmes, E.W. Biochemistry (1989) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg