The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A library of oligosaccharide probes (neoglycolipids) from N-glycosylated proteins reveals that conglutinin binds to certain complex-type as well as high mannose-type oligosaccharide chains.

This report describes the preparation of a library of oligosaccharide probes (neoglycolipids) from N-glycosylated proteins, characterization of the probes by liquid secondary ion mass spectrometry, and investigation of their reactions with 125I-labeled bovine serum conglutinin by chromatogram binding assays. The results, together with additional binding studies using neoglycolipids derived from purified complex type bi-, tri-, and tetraantennary oligosaccharides from urine, or their glycosidase-treated products, have shown that the combining specificity of conglutinin includes structures not only on high mannose-type oligosaccharides but also on hybrid- and complex-type chains. With high mannose-type oligosaccharides there is increased reactivity from the Man5 to the Man8 structures, indicating a preference for the terminal Man alpha 1-2 sequence. With complex- and hybrid-type oligosaccharides, the requirements for binding are the presence of nonreducing terminal N-acetylglucosamine or mannose residues, but the presence of a bisecting N-acetylglucosamine residue may inhibit binding. From these results it is deduced that the reactivity of conglutinin with the complement glycopeptide iC3b rather than the intact glycoprotein C3 is due to the oligosaccharide accessibility rendered by proteolysis in the complement cascade.[1]

References

  1. A library of oligosaccharide probes (neoglycolipids) from N-glycosylated proteins reveals that conglutinin binds to certain complex-type as well as high mannose-type oligosaccharide chains. Mizuochi, T., Loveless, R.W., Lawson, A.M., Chai, W., Lachmann, P.J., Childs, R.A., Thiel, S., Feizi, T. J. Biol. Chem. (1989) [Pubmed]
 
WikiGenes - Universities