The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

GLYCOPEPTIDE     (2R)-2-[[(2S)-2-[[(4R)-4- [[(2S)-2-[2-[(3R...

Synonyms: AC1L96ZE, 4468-EP2305808A1
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of C00528


Psychiatry related information on C00528

  • It has been suggested that the infectious agents of scrapie and Creutzfeldt-Jakob disease (CJD) are 'prions' constituted by a protease resistant glycopeptide, PrP [6].
  • In 27.6% of patients in the MPM group and 22.4% in the P/T group, therapy was initially supplemented with a glycopeptide for venous catheter infection or bacteraemia because of coagulase-negative staphylococci [7].

High impact information on C00528

  • This review summarizes current efforts to obtain homogeneous glycopeptide and glycoprotein materials by a variety of methods that draw from the techniques of recombinant expression, chemical synthesis, enzymatic transformation, and chemoselective ligation [8].
  • Invertase and its glycopeptide derivatives also inhibit the reaggregation of dispersed stem cells and promote the dissociation of preformed aggregates [9].
  • Examination of two other glycoproteins (the major histocompatibility complex antigens) in these cell lines showed that in M3.11, the H-2D but not the H-2K product was abnormally glycosylated and contained a smaller glycopeptide [10].
  • In contrast to most glycolipids and the carbohydrates themselves, glycopeptides bind to major histocompatibility complex molecules, and, in favourable cases, can stimulate T cells and lead to the expression of receptors that recognize the carbohydrate part of a glycopeptide with high specificity [11].
  • A third melanotropin core sequence or gamma-MSH similar to that found in ACTH and beta-LPH was predicted to occur in this glycopeptide from the complementary DNA sequence of mRNA isolated from bovine pituitary intermediate tissue [12].

Chemical compound and disease context of C00528


Biological context of C00528


Anatomical context of C00528


Associations of C00528 with other chemical compounds


Gene context of C00528

  • Glycopeptide export was severely impaired, however, in several sec61 mutants that were only marginally defective in misfolded protein export [29].
  • Binding of BW835 to glycopeptide 17 or to MUC1 was competitively inhibited by peanut agglutinin and by the synthetic glycopeptides TF alpha Ser or TF alpha Thr but not by their beta-anomers [30].
  • One glycopeptide unit, isolated from both plasminogen variants 1 (1D) and 2 (2D) possessed the following structure: Sia alpha 2 yields 3Gal beta 1 yields 3GalNAc-Thr [31].
  • The activity of this glycopeptide transferase is distinguished from that of ppGaNTase-T7 in that it forms a tetra-glycopeptide species from the MUC5AC tri-glycopeptide substrate, whereas ppGaNTase-T7 forms a hexa-glycopeptide species [32].
  • When fetuin and its glycopeptide and N-glycans of fetuin were used as substrates for ST8Sia II, PSA was found to be synthesized on native fetuin and its glycopeptide but not on free N-glycans [33].

Analytical, diagnostic and therapeutic context of C00528


  1. Emergence of vancomycin resistance in Staphylococcus aureus. Glycopeptide-Intermediate Staphylococcus aureus Working Group. Smith, T.L., Pearson, M.L., Wilcox, K.R., Cruz, C., Lancaster, M.V., Robinson-Dunn, B., Tenover, F.C., Zervos, M.J., Band, J.D., White, E., Jarvis, W.R. N. Engl. J. Med. (1999) [Pubmed]
  2. Characterization of a carboxyterminal peptide fragment of the human choriogonadotropin beta-subunit excreted in the urine of a woman with choriocarcinoma. Amr, S., Wehmann, R.E., Birken, S., Canfield, R.E., Nisula, B.C. J. Clin. Invest. (1983) [Pubmed]
  3. Glycopeptide storage in skin fibroblasts cultured from a patient with alpha-mannosidase deficiency. Tsay, G.C., Dawson, G., Matalon, R. J. Clin. Invest. (1975) [Pubmed]
  4. Treatment of CAPD-peritonitis due to glycopeptide-resistant Enterococcus faecium with quinupristin/dalfopristin. Lynn, W.A., Clutterbuck, E., Want, S., Markides, V., Lacey, S., Rogers, T.R., Cohen, J. Lancet (1994) [Pubmed]
  5. Glycopeptide-resistant Gemella haemolysans from blood. Reed, C., Efstratiou, A., Morrison, D., Woodford, N. Lancet (1993) [Pubmed]
  6. Evidence suggesting that PrP is not the infectious agent in Creutzfeldt-Jakob disease. Manuelidis, L., Sklaviadis, T., Manuelidis, E.E. EMBO J. (1987) [Pubmed]
  7. Empirical antimicrobial monotherapy in patients after high-dose chemotherapy and autologous stem cell transplantation: a randomised, multicentre trial. Reich, G., Cornely, O.A., Sandherr, M., Kubin, T., Krause, S., Einsele, H., Thiel, E., Bellaire, T., Dörken, B., Maschmeyer, G. Br. J. Haematol. (2005) [Pubmed]
  8. Homogeneous glycopeptides and glycoproteins for biological investigation. Grogan, M.J., Pratt, M.R., Marcaurelle, L.A., Bertozzi, C.R. Annu. Rev. Biochem. (2002) [Pubmed]
  9. Teratocarcinoma stem cells have a cell surface carbohydrate-binding component implicated in cell-cell adhesion. Grabel, L.B., Rosen, S.D., Martin, G.R. Cell (1979) [Pubmed]
  10. Abnormalities in the glycosylation of immunoglobulin heavy chain and an h-2 transplantation antigen in a mouse myeloma mutant. Weitzman, S., Nathenson, S.G., Scharff, M.D. Cell (1977) [Pubmed]
  11. Convergent total synthesis of a tumour-associated mucin motif. Sames, D., Chen, X.T., Danishefsky, S.J. Nature (1997) [Pubmed]
  12. Circulating human pituitary pro-gamma-melanotropin enhances the adrenal response to ACTH. Al-Dujaili, E.A., Hope, J., Estivariz, F.E., Lowry, P.J., Edwards, C.R. Nature (1981) [Pubmed]
  13. Diphtheria toxin has the properties of a lectin. Draper, R.K., Chin, D., Simon, M.I. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  14. Carbohydrate structure and cell differentitation: unique properties of fucosyl-glycopeptides isolated from embryonal carcinoma cells. Muramatsu, T., Gachelin, G., Nicolas, J.F., Condamine, H., Jakob, H., Jacob, F. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  15. Selective protection of nonmalignant cells by a novel cell surface glycopeptide. McGee, J.E., Johnson, B., Kinders, R., Johnson, T.C. Cancer Res. (1983) [Pubmed]
  16. Solid-phase synthesis of bleomycin group antibiotics. Construction of a 108-member deglycobleomycin library. Leitheiser, C.J., Smith, K.L., Rishel, M.J., Hashimoto, S., Konishi, K., Thomas, C.J., Li, C., McCormick, M.M., Hecht, S.M. J. Am. Chem. Soc. (2003) [Pubmed]
  17. Intermittent versus continuous intraperitoneal glycopeptide/ceftazidime treatment in children with peritoneal dialysis-associated peritonitis. The Mid-European Pediatric Peritoneal Dialysis Study Group (MEPPS). Schaefer, F., Klaus, G., Müller-Wiefel, D.E., Mehls, O. J. Am. Soc. Nephrol. (1999) [Pubmed]
  18. The carboxy terminus of the precursor to vasopressin and neurophysin: immunocytochemistry in rat brain. Watson, S.J., Seidah, N.G., Chrétien, M. Science (1982) [Pubmed]
  19. Glycopeptide antibiotic resistance. Pootoolal, J., Neu, J., Wright, G.D. Annu. Rev. Pharmacol. Toxicol. (2002) [Pubmed]
  20. Recognition of carbohydrate by major histocompatibility complex class I-restricted, glycopeptide-specific cytotoxic T lymphocytes. Haurum, J.S., Arsequell, G., Lellouch, A.C., Wong, S.Y., Dwek, R.A., McMichael, A.J., Elliott, T. J. Exp. Med. (1994) [Pubmed]
  21. Rosette formation between human lymphocytes and sheep erythrocytes. Inhibition of rosette formation by specific glycopeptides. Boldt, D.H., Armstrong, J.P. J. Clin. Invest. (1976) [Pubmed]
  22. Isolation and partial characterization of surface components of cell line MDA-MB-231 derived from a human metastatic breast carcinoma. Walker-Nasir, E., Codington, J.F., Jahnke, M.R., Fuller, T.C., Jeanloz, R.W. J. Natl. Cancer Inst. (1982) [Pubmed]
  23. Surface glycopeptide change triggered by contact between normal cells from rat liver and their simian virus 40-transformed cells from the same virus. Yokota, M., Kato, I., Onodera, K., Kadosaka, T., Aoi, Y. J. Natl. Cancer Inst. (1979) [Pubmed]
  24. Presentation of cytosolic glycosylated peptides by human class I major histocompatibility complex molecules in vivo. Haurum, J.S., Høier, I.B., Arsequell, G., Neisig, A., Valencia, G., Zeuthen, J., Neefjes, J., Elliott, T. J. Exp. Med. (1999) [Pubmed]
  25. Asparagine-linked oligosaccharides in murine tumor cells: comparison of a WGA-resistant (WGAr) nonmetastatic mutant and a related WGA-sensitive (WGAs) metastatic line. Dennis, J.W., Carver, J.P., Schachter, H. J. Cell Biol. (1984) [Pubmed]
  26. Transfer of mannose from mannosyl retinyl phosphate to protein. Rosso, G.C., Masushige, S., Quill, H., Wolf, G. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  27. The neutral cysteine protease bleomycin hydrolase is essential for epidermal integrity and bleomycin resistance. Schwartz, D.R., Homanics, G.E., Hoyt, D.G., Klein, E., Abernethy, J., Lazo, J.S. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  28. Vasotocin and isotocin precursors from the white sucker, Catostomus commersoni: cloning and sequence analysis of the cDNAs. Heierhorst, J., Morley, S.D., Figueroa, J., Krentler, C., Lederis, K., Richter, D. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  29. The protein translocation channel mediates glycopeptide export across the endoplasmic reticulum membrane. Gillece, P., Pilon, M., Römisch, K. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  30. Monoclonal antibody BW835 defines a site-specific Thomsen-Friedenreich disaccharide linked to threonine within the VTSA motif of MUC1 tandem repeats. Hanisch, F.G., Stadie, T., Bosslet, K. Cancer Res. (1995) [Pubmed]
  31. Carbohydrate of the human plasminogen variants. III. Structure of the O-glycosidically linked oligosaccharide unit. Hayes, M.L., Castellino, F.J. J. Biol. Chem. (1979) [Pubmed]
  32. Cloning and characterization of a ninth member of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase family, ppGaNTase-T9. Ten Hagen, K.G., Bedi, G.S., Tetaert, D., Kingsley, P.D., Hagen, F.K., Balys, M.M., Beres, T.M., Degand, P., Tabak, L.A. J. Biol. Chem. (2001) [Pubmed]
  33. Characterization of mouse ST8Sia II (STX) as a neural cell adhesion molecule-specific polysialic acid synthase. Requirement of core alpha1,6-linked fucose and a polypeptide chain for polysialylation. Kojima, N., Tachida, Y., Yoshida, Y., Tsuji, S. J. Biol. Chem. (1996) [Pubmed]
  34. Rapid, sensitive structure analysis of oligosaccharides. Zhao, Y., Kent, S.B., Chait, B.T. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  35. Assembling the glycopeptide antibiotic scaffold: The biosynthesis of A47934 from Streptomyces toyocaensis NRRL15009. Pootoolal, J., Thomas, M.G., Marshall, C.G., Neu, J.M., Hubbard, B.K., Walsh, C.T., Wright, G.D. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  36. Glycopeptide enkephalin analogues produce analgesia in mice: evidence for penetration of the blood-brain barrier. Polt, R., Porreca, F., Szabò, L.Z., Bilsky, E.J., Davis, P., Abbruscato, T.J., Davis, T.P., Harvath, R., Yamamura, H.I., Hruby, V.J. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
WikiGenes - Universities