The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

DNA footprint analysis of the transcriptional activator proteins NodD1 and NodD3 on inducible nod gene promoters.

The Rhizobium meliloti nodD1 and nodD3 gene products (NodD1 and NodD3) are members of the lysR-nodD gene regulator family. They are functionally distinct in that NodD1 transcriptionally activates other nod genes in the presence of a flavonoid inducer such as luteolin, while NodD3 is capable of activating nod gene expression at high levels in the absence of inducer. NodD1 and NodD3 are DNA-binding proteins which interact with DNA sequences situated upstream of the transcription initiation sites of at least three sets of inducible nod genes. We report the footprinting of NodD1- and NodD3-DNA complexes with both DNase I and the 1,10-phenanthroline-copper ion reagent. NodD1 and NodD3 both interacted with the nodABC, nodFE, and nodH promoters and protected from cleavage an extensive piece of DNA, including the nod box, from approximately -20 to -75 from the transcription start site for each of the three promoters. The constitutively activating protein NodD3 displayed an additional hypersensitive cleavage site in its footprint compared with NodD1.[1]


WikiGenes - Universities