The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Streptomyces K15 DD-peptidase-catalysed reactions with ester and amide carbonyl donors.

In water, the purified 26 000-Mr membrane-bound DD-peptidase of Streptomyces K15 hydrolyses the ester carbonyl donor Ac2-L-Lys-D-Ala-D-lactate (release of D-lactate) and the amide carbonyl donor Ac2-L-Lys-D-Ala-D-Ala (release of D-alanine) with accumulation of acyl- (Ac2-L-Lys-D-alanyl-)enzyme. Whereas hydrolysis of the ester substrate proceeds to completion, hydrolysis of the amide substrate is negligible because of the capacity of the K15 DD-peptidase for utilizing the released D-alanine in a transfer reaction (Ac2-L-Lys-D-Ala-D-Ala + D-Ala----Ac2-L-Lys-D-Ala-D-Ala + D-Ala) that maintains the concentration of the amide substrate at a constant level. In the presence of an amino acceptor X-NH2 (Gly-Gly or Gly-L-Ala) related to the Streptomyces peptidoglycan, both amide and ester carbonyl donors are processed without detectable accumulation of acyl-enzyme. Under proper conditions, the acceptor activity of water and, in the case of the amide substrate, the acceptor activity of the released D-alanine can be totally overcome so that the two substrates are quantitatively converted into transpeptidated product Ac2-L-Lys-D-Ala-NH-X (and hydrolysis is prevented). Experimental evidence suggests that the amino acceptor modifies both the binding of the carbonyl donor to the enzyme and the ensuing rate of enzyme acylation.[1]

References

  1. Streptomyces K15 DD-peptidase-catalysed reactions with ester and amide carbonyl donors. Nguyen-Distèche, M., Leyh-Bouille, M., Pirlot, S., Frère, J.M., Ghuysen, J.M. Biochem. J. (1986) [Pubmed]
 
WikiGenes - Universities