The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Streptomyces


Psychiatry related information on Streptomyces

  • The release of p-nitrophenol was linear to reaction time at an early stage of the reaction with phospholipase D from Streptomyces sp. In the spectrophotometric assay for the reaction with phospholipase D from Streptomyces chromofuscus, which has higher hydrolytic activity than transphosphatidylation activity, p-nitrophenol was not found [6].

High impact information on Streptomyces

  • At least three different RNA polymerase holoenzymes direct transcription of the agarase gene (dagA) of Streptomyces coelicolor A3(2) [7].
  • We demonstrate the use of this approach through the rapid improvement of tylosin production from Streptomyces fradiae [8].
  • Antibiotic-producing polyketide synthases (PKSs) are enzymes responsible for the biosynthesis in Streptomyces and related filamentous bacteria of a remarkably broad range of bioactive metabolites, including antitumour aromatic compounds such as mithramycin and macrolide antibiotics such as erythromycin [9].
  • However, the rppA gene from the Gram-positive, soil-living filamentous bacterium Streptomyces griseus encodes a 372-amino-acid protein that shows significant similarity to chalcone synthases [10].
  • In an arrangement that seems to be generally true of antibiotic biosynthetic genes in Streptomyces and related bacteria like S. erythraea, the ery genes encoding the biosynthetic pathway to erythromycin are clustered around the gene (ermE) that confers self-resistance on S. erythraea [11].

Chemical compound and disease context of Streptomyces

  • Fragmentation of benzylpenicillin after interaction with the exocellular DD-carboxypeptidase-transpeptidases of Streptomyces R61 and R39 [12].
  • Fate of thiazolidine ring during fragmentation of penicillin by exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R61 [13].
  • Selective expression of different combinations of the Streptomyces glaucescens tetracenomycin (Tcm) tcmJKLMN genes in a tcmGHIJKLMNO null background has been used to show that the Tcm PKS consists of at least the TcmKLMN proteins [14].
  • The function of homoserine lactone derivatives in many cell density-dependent phenomena and the similarity of RspA to a Streptomyces ambofaciens protein suggest that synthesis of homoserine lactone may be a general signal of starvation [15].
  • Concomitant expression of these genes in the actinomycete Streptomyces coelicolor produced epothilones A and B. Streptomyces coelicolor is more amenable to strain improvement and grows about 10-fold as rapidly as the natural producer, so this heterologous expression system portends a plentiful supply of this important agent [16].

Biological context of Streptomyces


Anatomical context of Streptomyces


Gene context of Streptomyces

  • We suggest that coupling the operon's constitutive promoter to the galE gene fulfills a physiological requirement for constitutive UDPgalactose 4-epimerase expression in Streptomyces [27].
  • Anisomycin, a translational inhibitor secreted by Streptomyces spp., strongly activates the stress-activated mitogen-activated protein (MAP) kinases JNK/SAPK (c-Jun NH2-terminal kinase/stress-activated protein kinase) and p38/RK in mammalian cells, resulting in rapid induction of immediate-early (IE) genes in the nucleus [28].
  • A relA/spoT homologous gene from Streptomyces coelicolor A3(2) controls antibiotic biosynthetic genes [29].
  • The beta-lactamase inhibitor protein (BLIP) of Streptomyces clavuligerus, is a potent inhibitor of several beta-lactamases, including the TEM-1 enzyme (Ki = 0.6 nM) [30].
  • Sanglifehrin A (SFA) is a novel immunosuppressant isolated from Streptomyces sp. that binds strongly to the human immunophilin cyclophilin A (CypA) [31].

Analytical, diagnostic and therapeutic context of Streptomyces


  1. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Fenteany, G., Standaert, R.F., Lane, W.S., Choi, S., Corey, E.J., Schreiber, S.L. Science (1995) [Pubmed]
  2. A stationary-phase stress-response sigma factor from Mycobacterium tuberculosis. DeMaio, J., Zhang, Y., Ko, C., Young, D.B., Bishai, W.R. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  3. Ancestral antibiotic resistance in Mycobacterium tuberculosis. Morris, R.P., Nguyen, L., Gatfield, J., Visconti, K., Nguyen, K., Schnappinger, D., Ehrt, S., Liu, Y., Heifets, L., Pieters, J., Schoolnik, G., Thompson, C.J. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  4. Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in Mycobacterium smegmatis. Takiff, H.E., Cimino, M., Musso, M.C., Weisbrod, T., Martinez, R., Delgado, M.B., Salazar, L., Bloom, B.R., Jacobs, W.R. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  5. Cells expressing the DG42 gene from early Xenopus embryos synthesize hyaluronan. Meyer, M.F., Kreil, G. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  6. A spectrophotometric assay for the transphosphatidylation activity of phospholipase D enzyme. Hagishita, T., Nishikawa, M., Hatanaka, T. Anal. Biochem. (1999) [Pubmed]
  7. At least three different RNA polymerase holoenzymes direct transcription of the agarase gene (dagA) of Streptomyces coelicolor A3(2). Buttner, M.J., Smith, A.M., Bibb, M.J. Cell (1988) [Pubmed]
  8. Genome shuffling leads to rapid phenotypic improvement in bacteria. Zhang, Y.X., Perry, K., Vinci, V.A., Powell, K., Stemmer, W.P., del Cardayré, S.B. Nature (2002) [Pubmed]
  9. A chain initiation factor common to both modular and aromatic polyketide synthases. Bisang, C., Long, P.F., Cortés, J., Westcott, J., Crosby, J., Matharu, A.L., Cox, R.J., Simpson, T.J., Staunton, J., Leadlay, P.F. Nature (1999) [Pubmed]
  10. A new pathway for polyketide synthesis in microorganisms. Funa, N., Ohnishi, Y., Fujii, I., Shibuya, M., Ebizuka, Y., Horinouchi, S. Nature (1999) [Pubmed]
  11. An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Cortes, J., Haydock, S.F., Roberts, G.A., Bevitt, D.J., Leadlay, P.F. Nature (1990) [Pubmed]
  12. Fragmentation of benzylpenicillin after interaction with the exocellular DD-carboxypeptidase-transpeptidases of Streptomyces R61 and R39. Frere, J., Ghuysen, J., Degelaen, J., Loffet, A., Perkins, H.R. Nature (1975) [Pubmed]
  13. Fate of thiazolidine ring during fragmentation of penicillin by exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R61. Frere, J., Ghuysen, J., Vanderhaeghe, H., Adriaens, P., Degelaen, J., De Graeve, J. Nature (1976) [Pubmed]
  14. Enzymatic synthesis of a bacterial polyketide from acetyl and malonyl coenzyme A. Shen, B., Hutchinson, C.R. Science (1993) [Pubmed]
  15. Sensing starvation: a homoserine lactone--dependent signaling pathway in Escherichia coli. Huisman, G.W., Kolter, R. Science (1994) [Pubmed]
  16. Cloning and heterologous expression of the epothilone gene cluster. Tang, L., Shah, S., Chung, L., Carney, J., Katz, L., Khosla, C., Julien, B. Science (2000) [Pubmed]
  17. Activation of phospholipase D is tightly coupled to the phagocytosis of Mycobacterium tuberculosis or opsonized zymosan by human macrophages. Kusner, D.J., Hall, C.F., Schlesinger, L.S. J. Exp. Med. (1996) [Pubmed]
  18. Analysis of the nucleotide sequence of the Streptomyces glaucescens tcmI genes provides key information about the enzymology of polyketide antibiotic biosynthesis. Bibb, M.J., Biró, S., Motamedi, H., Collins, J.F., Hutchinson, C.R. EMBO J. (1989) [Pubmed]
  19. sigmaR, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A3(2). Paget, M.S., Kang, J.G., Roe, J.H., Buttner, M.J. EMBO J. (1998) [Pubmed]
  20. Streptogramin-based gene regulation systems for mammalian cells. Fussenegger, M., Morris, R.P., Fux, C., Rimann, M., von Stockar, B., Thompson, C.J., Bailey, J.E. Nat. Biotechnol. (2000) [Pubmed]
  21. Genetics of Streptomyces fradiae and tylosin biosynthesis. Baltz, R.H., Seno, E.T. Annu. Rev. Microbiol. (1988) [Pubmed]
  22. Reverse transcriptase activity innate to DNA polymerase I and DNA topoisomerase I proteins of Streptomyces telomere complex. Bao, K., Cohen, S.N. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  23. In vitro cytotoxicity of a novel antitumor antibiotic, spicamycin derivative, in human lung cancer cell lines. Lee, Y.S., Nishio, K., Ogasawara, H., Funayama, Y., Ohira, T., Saijo, N. Cancer Res. (1995) [Pubmed]
  24. Organization of rhodopsin and a high molecular weight glycoprotein in rod photoreceptor disc membranes using monoclonal antibodies. MacKenzie, D., Molday, R.S. J. Biol. Chem. (1982) [Pubmed]
  25. Exogenous phospholipase D generates lysophosphatidic acid and activates Ras, Rho and Ca2+ signaling pathways. van Dijk, M.C., Postma, F., Hilkmann, H., Jalink, K., van Blitterswijk, W.J., Moolenaar, W.H. Curr. Biol. (1998) [Pubmed]
  26. Involvement of phospholipase D in sphingosine 1-phosphate-induced activation of phosphatidylinositol 3-kinase and Akt in Chinese hamster ovary cells overexpressing EDG3. Banno, Y., Takuwa, Y., Akao, Y., Okamoto, H., Osawa, Y., Naganawa, T., Nakashima, S., Suh, P.G., Nozawa, Y. J. Biol. Chem. (2001) [Pubmed]
  27. Two promoters, one inducible and one constitutive, control transcription of the Streptomyces lividans galactose operon. Fornwald, J.A., Schmidt, F.J., Adams, C.W., Rosenberg, M., Brawner, M.E. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  28. Anisomycin selectively desensitizes signalling components involved in stress kinase activation and fos and jun induction. Hazzalin, C.A., Le Panse, R., Cano, E., Mahadevan, L.C. Mol. Cell. Biol. (1998) [Pubmed]
  29. A relA/spoT homologous gene from Streptomyces coelicolor A3(2) controls antibiotic biosynthetic genes. Martínez-Costa, O.H., Arias, P., Romero, N.M., Parro, V., Mellado, R.P., Malpartida, F. J. Biol. Chem. (1996) [Pubmed]
  30. Contributions of aspartate 49 and phenylalanine 142 residues of a tight binding inhibitory protein of beta-lactamases. Petrosino, J., Rudgers, G., Gilbert, H., Palzkill, T. J. Biol. Chem. (1999) [Pubmed]
  31. Structure of human cyclophilin A in complex with the novel immunosuppressant sanglifehrin A at 1.6 A resolution. Kallen, J., Sedrani, R., Zenke, G., Wagner, J. J. Biol. Chem. (2005) [Pubmed]
  32. Production of the antitumor drug epirubicin (4'-epidoxorubicin) and its precursor by a genetically engineered strain of Streptomyces peucetius. Madduri, K., Kennedy, J., Rivola, G., Inventi-Solari, A., Filippini, S., Zanuso, G., Colombo, A.L., Gewain, K.M., Occi, J.L., MacNeil, D.J., Hutchinson, C.R. Nat. Biotechnol. (1998) [Pubmed]
  33. A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Guilfoile, P.G., Hutchinson, C.R. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  34. Crystal structure of an engineered subtilisin inhibitor complexed with bovine trypsin. Takeuchi, Y., Nonaka, T., Nakamura, K.T., Kojima, S., Miura, K., Mitsui, Y. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  35. Effects of teleocidin and the phorbol ester tumor promoters on cell transformation, differentiation, and phospholipid metabolism. Fisher, P.B., Miranda, A.F., Mufson, R.A., Weinstein, L.S., Fujiki, H., Sugimura, T., Weinstein, I.B. Cancer Res. (1982) [Pubmed]
  36. Molecular cloning and expression of the phenoxazinone synthase gene from Streptomyces antibioticus. Jones, G.H., Hopwood, D.A. J. Biol. Chem. (1984) [Pubmed]
WikiGenes - Universities