DCCD inhibits protein translocation into plasma membrane vesicles from Escherichia coli at two different steps.
In vitro translocation of periplasmic and outer membrane proteins into inverted plasma membrane vesicles from Escherichia coli was completely prevented by the H+-ATPase inhibitor N,N'-dicyclohexylcarbodiimide (DCCD). DCCD was inhibitory to both co- and post-translational translocations, suggesting an involvement of the H+-translocating F1F0-ATPase in either mode of transport. This was verified by (i) the dependence of efficient co-translational translocation upon a low salt, i.e. F1-containing extract from membrane vesicles; (ii) the co-purification of the translocation activity present in this extract and F1-ATPase; (iii) the inability of either vesicles or their low-salt extract, derived from F1F0-ATPase-lacking mutant strains, to support translocation; and (iv) the greatly diminished extent of ATP-dependent, post-translational translocation into F1-deprived vesicles. Membranes devoid of F1 did show, however, residual translocation activity that was also found to be inhibitable by DCCD. These results suggest a dual target for DCCD in bacterial protein export, one being the H+-ATPase and the other an as yet unidentified translocation factor.[1]References
- DCCD inhibits protein translocation into plasma membrane vesicles from Escherichia coli at two different steps. Müller, M., Fisher, R.P., Rienhöfer-Schweer, A., Hoffschulte, H.K. EMBO J. (1987) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg