The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

DCCD     N,N'- dicyclohexylmethanediimine

Synonyms: DCCI, DCC solution, PubChem12523, CHEMBL162598, ACMC-1ASTJ, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.



High impact information on DICYCLOHEXYLCARBODIIMIDE


Chemical compound and disease context of DICYCLOHEXYLCARBODIIMIDE






Associations of DICYCLOHEXYLCARBODIIMIDE with other chemical compounds



  • Binding of HK-I to mitochondria expressing E72Q-mVDAC1, as compared to native VDAC1, was decreased by approximately 70% and rendered insensitive to DCCD [25].
  • Functional role of aspartyl and glutamyl residues in the membrane segments of the yeast PMA1 ATPase: interaction with DCCD [27].
  • The preferential binding of dicyclohexylcarbodiimide to cytochrome b and phospholipids in soluble complex III from yeast mitochondria [28].
  • Although independent of Mdl1 activity, complex formation is impaired upon inhibition of the F(1)F(0)-ATP synthase with oligomycin or N,N'-dicyclohexylcarbodiimide [29].
  • This finding rules out the possibility that contaminating F0 ATPase gives rise to the DCCD binding exhibited by PLP and confirms the possibility that PLP has proton channel activity, as suggested by Lin and Lees (1,2) [30].

Analytical, diagnostic and therapeutic context of DICYCLOHEXYLCARBODIIMIDE

  • Western blot analysis showed that the [14C] DCCD-labeled 82-kDa protein is not a DCCD-crosslinked product [31].
  • Titration of the reconstituted membrane vesicles with dicyclohexylcarbodiimide revealed a similar sensitivity of the homologous and hybrid F1F0 complexes towards the inhibitor [32].
  • In the "high performance liquid chromatography (HPLC) peak area" method, the DCCD-modified subunit c was separated from unmodified subunit c on an anion exchange AX300 HPLC column, and the areas of the peaks from the chromatogram quantitated [33].
  • Two major polypeptides, 72 and 60 kDa, that copurified with the ATPase activity and the 14-18-kDa DCCD-binding peptide are postulated to be subunits of a holoenzyme of 300-600 kDa (estimated by gel filtration) [34].
  • The denatured 82-kDa protein, identified by its selective labeling with [14C]dicyclohexylcarbodiimide (DCCD), was purified by preparative two-dimensional gel electrophoresis [31].


  1. DCCD inhibits protein translocation into plasma membrane vesicles from Escherichia coli at two different steps. Müller, M., Fisher, R.P., Rienhöfer-Schweer, A., Hoffschulte, H.K. EMBO J. (1987) [Pubmed]
  2. Requirements for entry of poliovirus RNA into cells at low pH. Madshus, I.H., Olsnes, S., Sandvig, K. EMBO J. (1984) [Pubmed]
  3. Restoration of oxidative phosphorylation by purified N,N'-dicyclohexylcarbodiimide-sensitive latent adenosinetriphosphatase from Mycobacterium phlei. Lee, S.H., Cohen, N.S., Brodie, A.F. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  4. Specific protection by Na+ or Li+ of the F1F0-ATPase of Propionigenium modestum from the reaction with dicyclohexylcarbodiimide. Kluge, C., Dimroth, P. J. Biol. Chem. (1993) [Pubmed]
  5. ATP-dependent calcium transport in isolated membrane vesicles from Azotobacter vinelandii. Bhattacharyya, P., Barnes, E.M. J. Biol. Chem. (1976) [Pubmed]
  6. Voltage-generated torque drives the motor of the ATP synthase. Kaim, G., Dimroth, P. EMBO J. (1998) [Pubmed]
  7. Selective degradation of insulin within rat liver endosomes. Doherty, J.J., Kay, D.G., Lai, W.H., Posner, B.I., Bergeron, J.J. J. Cell Biol. (1990) [Pubmed]
  8. Transport of a fluorescent macromolecule via endosomes to the vacuole in Saccharomyces cerevisiae. Makarow, M., Nevalainen, L.T. J. Cell Biol. (1987) [Pubmed]
  9. N,N'-dicyclohexylcarbodiimide cross-linking suggests a central core of helices II in oligomers of URF13, the pore-forming T-toxin receptor of cms-T maize mitochondria. Rhoads, D.M., Kaspi, C.I., Levings, C.S., Siedow, J.N. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  10. Identification of N,N'-dicyclohexylcarbodiimide-reactive glutamic and aspartic acid residues in Escherichia coli transhydrogenase and the exchange of these by site-specific mutagenesis. Glavas, N., Ahmad, S., Bragg, P.D., Olausson, T., Rydström, J. J. Biol. Chem. (1993) [Pubmed]
  11. Inhibition of the membrane-bound adenosine triphosphatase of Escherichia coli by dicyclohexylcarbodi-imide. Feinstein, D.L., Fisher, R.J. Biochem. J. (1977) [Pubmed]
  12. Inhibition of NADH-ubiquinone reductase activity by N,N'-dicyclohexylcarbodiimide and correlation of this inhibition with the occurrence of energy-coupling site 1 in various organisms. Yagi, T. Biochemistry (1987) [Pubmed]
  13. Proton-pumping N,N'-dicyclohexylcarbodiimide-sensitive inorganic pyrophosphate synthase from Rhodospirillum rubrum: purification, characterization, and reconstitution. Nyrén, P., Nore, B.F., Strid, A. Biochemistry (1991) [Pubmed]
  14. Mutations in the maize mitochondrial T-urf13 gene eliminate sensitivity to a fungal pathotoxin. Braun, C.J., Siedow, J.N., Williams, M.E., Levings, C.S. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  15. 31P nuclear magnetic resonance studies of bioenergetics and glycolysis in anaerobic Escherichia coli cells. Ugurbil, K., Rottenberg, H., Glynn, P., Shulman, R.G. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  16. Mechanism of inhibition of mitochondrial adenosine triphosphatase by dicyclohexylcarbodiimide and oligomycin: relationship to ATP synthesis. Penefsky, H.S. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  17. Protonmotive force-driven active transport of D-glucose and L-proline in the protozoan parasite Leishmania donovani. Zilberstein, D., Dwyer, D.M. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  18. Studies on the mechanism of oxidative phosphorylation: effects of specific F0 modifiers on ligand-induced conformation changes of F1. Matsuno-Yagi, A., Yagi, T., Hatefi, Y. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  19. A proton gradient controls a calcium-release channel in sarcoplasmic reticulum. Shoshan, V., MacLennan, D.H., Wood, D.S. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  20. cDNA sequence encoding the 16-kDa proteolipid of chromaffin granules implies gene duplication in the evolution of H+-ATPases. Mandel, M., Moriyama, Y., Hulmes, J.D., Pan, Y.C., Nelson, H., Nelson, N. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  21. Interactions of dicyclohexylcarbodiimide with myelin proteolipid. Lin, L.F., Lees, M.B. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  22. Mechanism of entry into the cytosol of poliovirus type 1: requirement for low pH. Madshus, I.H., Olsnes, S., Sandvig, K. J. Cell Biol. (1984) [Pubmed]
  23. Clathrin-coated vesicles from rat liver: enzymatic profile and characterization of ATP-dependent proton transport. Van Dyke, R.W., Steer, C.J., Scharschmidt, B.F. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  24. Ethinyl estradiol decreases acidification of rat liver endocytic vesicles. Van Dyke, R.W., Root, K.V. Hepatology (1993) [Pubmed]
  25. The voltage-dependent anion channel-1 modulates apoptotic cell death. Zaid, H., Abu-Hamad, S., Israelson, A., Nathan, I., Shoshan-Barmatz, V. Cell Death Differ. (2005) [Pubmed]
  26. Cooperativity and stoichiometry of substrate binding to the catalytic sites of Escherichia coli F1-ATPase. Effects of magnesium, inhibitors, and mutation. Weber, J., Wilke-Mounts, S., Senior, A.E. J. Biol. Chem. (1994) [Pubmed]
  27. Functional role of aspartyl and glutamyl residues in the membrane segments of the yeast PMA1 ATPase: interaction with DCCD. Padmanabha, K.P., Pardo, J.P., Petrov, V.V., Sen Gupta, S., Slayman, C.W. Folia Microbiol. (Praha) (1997) [Pubmed]
  28. The preferential binding of dicyclohexylcarbodiimide to cytochrome b and phospholipids in soluble complex III from yeast mitochondria. Beattie, D.S., Clejan, L., Bosch, C.G. J. Biol. Chem. (1984) [Pubmed]
  29. Reversible assembly of the ATP-binding cassette transporter Mdl1 with the F1F0-ATP synthase in mitochondria. Galluhn, D., Langer, T. J. Biol. Chem. (2004) [Pubmed]
  30. Analysis of myelin proteolipid protein and F0 ATPase subunit 9 in normal and jimpy CNS. Benjamins, J.A., Studzinski, D.M., Skoff, R.P. Neurochem. Res. (1994) [Pubmed]
  31. Purification of a reconstitutively active K+/H+ antiporter from rat liver mitochondria. Li, X.Q., Hegazy, M.G., Mahdi, F., Jezek, P., Lane, R.D., Garlid, K.D. J. Biol. Chem. (1990) [Pubmed]
  32. Structural and functional relationship of ATP synthases (F1F0) from Escherichia coli and the thermophilic bacterium PS3. Steffens, K., Di Gioia, A., Deckers-Hebestreit, G., Altendorf, K. J. Biol. Chem. (1987) [Pubmed]
  33. H+-ATPase activity of Escherichia coli F1F0 is blocked after reaction of dicyclohexylcarbodiimide with a single proteolipid (subunit c) of the F0 complex. Hermolin, J., Fillingame, R.H. J. Biol. Chem. (1989) [Pubmed]
  34. Properties of the partially purified tonoplast H+-pumping ATPase from oat roots. Randall, S.K., Sze, H. J. Biol. Chem. (1986) [Pubmed]
WikiGenes - Universities