The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes.

Mutations in the GLN3 gene prevented a normal increase in the NAD-glutamate dehydrogenase and glutamine synthetase levels in glutamate-grown Saccharomyces cerevisiae cells, whereas mutations in the URE2 gene resulted in high levels of these enzymes in glumate- and glutamine-grown cells. A ure2 gln3 double mutant had low levels of glutamate dehydrogenase and glutamine synthetase in cells grown on glutamate and glutamine; thus, gln3 mutations were epistatic to the ure2 mutations. The results suggest that the GLN3 product is capable of promoting increases in enzyme levels in the absence of a functional URE2 product and that the URE2 product antagonizes the GLN3 product. The URE2 and GLN3 genes were also found to regulate the level of arginase activity. This regulation is completely independent of the regulation of arginase by substrate induction. The activities of glutamate dehydrogenase, glutamine synthetase, and arginase were higher in cells grown on glutamate as the nitrogen source than they were in cells grown under a nitrogen-limiting condition. It had previously been shown that the levels of these enzymes can be increased by glutamine deprivation. We propose that the URE2-GLN3 system regulates enzyme synthesis, in response to glutamine and glutamate, to adjust the intracellular concentration of ammonia so as to maintain glutamine at the level required for optimal growth.[1]


WikiGenes - Universities