Construction of mutant and chimeric genes using the polymerase chain reaction.
In the polymerase chain reaction (PCR) the specific amplification of a small segment of DNA within a complex DNA sample is effected by repeated cycles of DNA denaturation and enzymatic synthesis primed by two oligonucleotides complementary to regions within opposite strands of the DNA. In this report a simple and efficient method is described in which PCR methodology is used to introduce specific mutations into a double stranded DNA molecule. In this procedure a supercoiled plasmid DNA serves as template for a PCR in which a primer bearing the mutated sequence is incorporated into the amplified product. The presence of convenient restriction sites in the mutagenic primer and in the amplified DNA permit direct replacement of a wild type DNA segment with the mutated segment by treating the PCR mixture with the appropriate restriction endonucleases followed by DNA ligase. Using this procedure, a single amino acid replacement, a 16 amino acid deletion and a replacement of four amino acids with a twelve amino acid segment from another membrane protein were introduced into the amino terminal signal segment of rat hepatic cytochrome P450b (P450IIB1).[1]References
- Construction of mutant and chimeric genes using the polymerase chain reaction. Vallette, F., Mege, E., Reiss, A., Adesnik, M. Nucleic Acids Res. (1989) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg