Reduction of oxidized cytochrome c by ascorbate ion.
The kinetics and mechanism of the reduction of oxidized cytochrome c by ascorbate has been investigated in potassium nitrate, potassium 4-morpholineethanesulfonate (KMes), potassium sulfate and potassium ascorbate media. The results are consistent with simple second order electron transfer from ascorbate dianion to cytochrome c and do not support electron transfer from an ascorbate dianion bound to the protein of the cytochrome as recently proposed by Myer and Kumar. A rate constant of 8 X 10(5) M-1 X s-1 (25 degrees C, ionic strength, 0.1) was found for the electron-transfer step. This rate constant is essentially independent of the specific ions used in controlling ionic strength.[1]References
- Reduction of oxidized cytochrome c by ascorbate ion. Williams, N.H., Yandell, J.K. Biochim. Biophys. Acta (1985) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg