The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Generation of Na+ electrochemical potential by the Na+-motive NADH oxidase and Na+/H+ antiport system of a moderately halophilic Vibrio costicola.

Cells of Vibrio costicola at pH 8.5 generate both membrane potential (inside negative) and delta pH (inside acidic) in the presence of a proton conductor, carbonyl cyanide m-chlorophenylhydrazone (CCCP). The generation of CCCP-resistant membrane potential was inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide that is known to inhibit the Na+-motive NADH oxidase of Vibrio alginolyticus. NADH oxidase, but not lactate oxidase, of inverted membrane vesicles prepared from V. costicola required Na+ for a maximum activity and was inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide. By the oxidation of NADH, inverted membrane vesicles generated concentration gradients of Na+ across the membrane, whose magnitude was always larger than that of delta pH by about 50 mV. In contrast, magnitudes of delta pH and Na+ concentration gradients generated by the oxidation of lactate were similar. Na+ translocation in the presence of lactate was inhibited by CCCP but little affected by valinomycin. On the other hand, Na+ translocation in the presence of NADH was resistant to CCCP and stimulated by valinomycin. Amiloride, an inhibitor for a eucaryotic Na+/H+ antiport system, inhibited the lactate-dependent Na+ translocation but had little effect on the NADH-dependent Na+ translocation. These results indicate that a primary event of lactate oxidation is the translocation of H+, which then causes the generation of Na+ concentration gradients via the secondary Na+/H+ antiport system. We conclude that the NADH oxidase of V. costicola translocates Na+ as an immediate result of respiration, leading to the generation of Na+ electrochemical potential.[1]

References

 
WikiGenes - Universities