The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Acetylcholine raises excitability by inhibiting the fast transient potassium current in cultured hippocampal neurons.

The effects of acetylcholine on cultured hippocampal neurons were investigated by using the whole-cell version of the patch-clamp technique. The CA1 region of the hippocampus was excised from brain slices of young rats (12-19 day old), incubated in a papain solution, and dissociated. Neurons were plated on a glial feeder layer. The experiments were conducted mostly on neurons cultured for 2-6 days. Upon depolarization under voltage clamp, these cells exhibited a fast transient outward current (A-current), which was inhibited by 4-aminopyridine (2.5 mM). Acetylcholine (0.1 microM) also inhibited this A-current, as did the muscarinic agonists bethanechol and muscarine. As expected from their inhibition of the A-current, acetylcholine and 4-aminopyridine both increased the amplitude of the action potential and prolonged its duration. We conclude that the inhibition of the A-current constitutes a mechanism by which acetylcholine exerts its excitatory influence on hippocampal neurons.[1]

References

  1. Acetylcholine raises excitability by inhibiting the fast transient potassium current in cultured hippocampal neurons. Nakajima, Y., Nakajima, S., Leonard, R.J., Yamaguchi, K. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
 
WikiGenes - Universities