The role of individual cysteine residues in the structure and function of the v-sis gene product.
The v-sis oncogene encodes a platelet-derived growth factor (PDGF)-related product whose transforming activity is mediated by its functional interaction with the PDGF receptor. PDGF, as well as processed forms of the v-sis gene product, is a disulfide-linked dimer with eight conserved cysteine residues in the minimum region necessary for biologic activity. Site-directed mutagenesis of the v-sis gene revealed that each conserved cysteine residue was required directly or indirectly for disulfide-linked dimer formation. However, substitution of serine for cysteine codons at any of four positions had no detrimental effect on transforming activity of the encoded v-sis protein. These results establish that interchain disulfide bonds are not essential in order for this protein to act as a functional ligand for the PDGF receptor. The remaining four substitutions of serine for cysteine each inactivated transforming function of the molecule. In each case this was associated with loss of a conformation shown to involve intramolecular disulfide bonds. These studies provide insight into the role of individual cysteine residues in determining the structure of the sis/PDGF molecule critical for biological activity.[1]References
- The role of individual cysteine residues in the structure and function of the v-sis gene product. Giese, N.A., Robbins, K.C., Aaronson, S.A. Science (1987) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg