The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

DNA mismatch-repair in Escherichia coli counteracting the hydrolytic deamination of 5-methyl-cytosine residues.

Derivatives of phage M13 were constructed and used for the in vitro preparation of heteroduplex DNA molecules containing base/base mismatches that mimick DNA lesions caused by hydrolytic deamination of 5-meC residues in Escherichia coli DNA (i.e. they carry a T/G mismatch in the special sequence context provided by the recognition site -CCA/TGG-of the Dcm-methyltransferase). Upon introduction of these heteroduplex DNAs into CaCl2-treated E. coli cells, the mismatches are efficiently repaired with high bias in favour of the DNA strand containing the mismatched guanine residue. This special DNA mismatch-repair operates on fully dam-methylated DNA and is independent of gene mutH. It thus fulfills the salient requirements of a repair pathway responsible for counteracting the spontaneous hydrolytic deamination of 5-meC in vivo. The repair efficiency is boosted by a 5-methyl group present on the cytosine residue at the next-nearest position to the 5' side of the mismatched guanine. The repair is severely impaired in host strains carrying a mutation in any of the three loci dcm, mutL and mutS.[1]

References

 
WikiGenes - Universities